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Abstract
Conditional computation for deep neural networks reduces overall computational load and improves model accuracy by
running a subset of the network. In this work, we present a runtime dynamically throttleable neural network (DTNN) that
can self-regulate its own performance target and computing resources by dynamically activating neurons in response to
a single control signal, called utilization. We describe a generic formulation of throttleable neural networks (TNNs) by
grouping and gating partial neural modules with various gating strategies. To directly optimize arbitrary application-level
performance metrics and model complexity, a controller network is trained separately to predict a context-aware utilization
via deep contextual bandits. Extensive experiments and comparisons on image classification and object detection tasks show
that TNNs can be effectively throttled across a wide range of utilization settings, while having peak accuracy and lower
cost that are comparable to corresponding vanilla architectures such as VGG, ResNet, ResNeXt, and DenseNet. We further
demonstrate the effectiveness of the controller network on throttleable 3D convolutional networks (C3D) for video-based
hand gesture recognition, which outperforms the vanilla C3D and all fixed utilization settings.

Keywords Throttleable neural network (TNN) · Conditional computation · Dynamic neural network · Contextual controller

1 Introduction

Recently, deep neural networks (DNNs) are prevailing in
computer vision applications on edgedevices and autonomous
vehicles where real-time response is needed. The compu-
tation power and memory budget are drastically different
across devices. Even on the same device, the runtime per-
formance varies given different battery conditions, operation
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temperatures, etc. Researchers try to design lightweight neu-
ral networks [1–6] or perform neural architecture search
(NAS) [7–11] with computation complexity constraints.
Others seek ways of network pruning [12–15], model dis-
tillation and compression [16–19] or quantization [20–24]
to reduce the memory footprint. These approaches typically
provide offline-trained static models with a constant alloca-
tion of computation andmemory resource. After training and
deploying, the model is fixed such that the whole network
has to be executed. However, the conditions in real-world
setting are often different, whereby the runtime inference
is neither optimal from an accuracy or efficiency perspec-
tive. The problem lies in that the naive training approaches
can only produce static models with a specialized trade-off
between performance and resource utilization. By leverag-
ing runtime filter selection inspired from Dropout [25,26],
this paper presents an adaptive system named dynamically
throttleable neural network (DTNN) to tackle challenges in
highly dynamic deployment environments. DTNN consists
of a context-aware controller and a throttleable neural net-
work. We use the term “throttleable” to suggest the ability of
the model to adaptively balance performance and resource
use in response to a control signal named utilization. TNNs
flexibly support diverse and dynamic configurations under
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different resource constraints without retraining or redeploy-
ing.The contextual controller learns the policy to generate the
input-dependent utilization as the control signal for TNNs.
For example, the controller predicts lower utilization for
“easy” input data (e.g., video sequences of static objects),
and higher utilization for “challenging” one (e.g., video
sequences ofmoving pedestrians). Optimizing the best trade-
off between performancemetrics and utilization is carried out
via deep contextual reinforcement learning [27–29]. In short,
the controller determines howmuch to throttle, and the TNN
determines how to throttle.

A major benefit of DTNN is the separation of the con-
troller and TNN. Any controller that provides a single scalar
can be used, such as heuristic and learnable policies. That is,
the controller can be as simple as a fixed utilization parame-
ter, or a state machine with trainable policies. Moreover, by
using a single utilization parameter u to conditionally gate
part of the network, the complexity of the controller is much
reduced while retaining highly flexible inference paths. In
addition to the input data, TNN only takes an extra input,
the utilization, for task-specific predictions. In comparison,
standard gating networks (Fig. 1a) produce a large number
of vectors as control signals that make it hard to train and
fine-tune the gating network. Another advantage of DTNN
is its high flexibility and modularity. TNN consists of neural
kernels which are structured into “blocks”, while conditional
computation is applied at the level of individual block. The
gating strategies consider different dimensions of the net-
work (“width-wise” or “depth-wise”) as well as the order of
gating (“independent” or “nested”). The training approach
for TNNs essentially enforces sparsity in the kernels such
that there is no catastrophic accuracy loss as runtime utiliza-
tion decreases in comparison to a naively trained network.
TNNs are trained by maximizing task performance metric
over all the utilization settings, while optionally minimizing
the computational cost for an application under conditions
that can change over time.

We are contributing to the body of research on conditional
computation and adaptive control (Sect. 2) with DTNN to
improve model performance and address efficient inference
with tight resource budgets such asmemory, power, and com-
pute capability. For vision-based systems, this is particularly
important, as the workload and processing throughput are
demanding and dynamic. To the best of our knowledge, we
offer the following contributions in this paper:

1. A novel architecture called throttleable neural networks
with plug-and-play throttleable blocks comprised of con-
volutional or fully connected filters, and the usage of
model capacity is controlled by a single utilization param-
eter.

input

Gater NNBinary vectors

output

Layer 1 (0,1,…,1)
Layer 2 (1,1,…,1)

… …
Layer K (0,1,…,0)

Layer 1     …     Layer K

(a)An example diagram of network with conditional gating
mechanism [30, 31]. The “gater” generates the gating functions
as binary masks and applies for all computation nodes.

input

Dynamic NN

output

(b) An example diagram of adaptive control of neural net-
works [28, 29, 32, 33]. The execution of a computation node is
determined by a control node . As a result, only a subset of
the inference graph is executed.

u = 0.3
“cat”

Controller TNN“easy”
input

“challenging”
input Controller TNN

u = 0.9 “cat”

(c) Our proposed dynamically throttleable neural network.
Based on the contextual information of the input data, the con-
troller decides how much utilization of TNN is needed. Different
from Figure 1a, gating is controlled by one scalar, the utiliza-
tion u, instead of vectors. The dynamic execution is decoupled
instead of entangled as in Figure 1b. Our DTNN enables much
more robust and flexible configurations.

Fig. 1 Conceptual architectures: a an ordinary gating network, b an
ordinary dynamic network, c the proposed DTNN. A computation node

can represent a single kernel, a group of kernels, a layer or a group
of layers based on different designs. An executed computation node is
drawn as while an unexecuted or gated node is drawn as

2. A lightweight context-aware controller trained to regulate
TNNs’ performances and computing needswith learnable
control policies.

3. Comprehensive experimental results on image classifi-
cation, object detection and video-based hand gesture
recognition tasks that demonstrate the effectiveness of
TNNs,whilemost of the previouswork only shows results
for image classification.
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4. A use case of DTNN for hand gesture recognition system
which outperforms the vanilla architectures and all fixed
utilization settings.

5. Physical power and runtime measurements on an embed-
ded GPU that demonstrate the efficacy and practicality of
TNNs.

This paper is organized as follows: in Sect. 2, we present
an overview of related research. In Sect. 3, we define the
DTNN system, including the TNN and contextual controller
architectures and training approaches. In Sect. 4, we provide
comprehensive experimental results and ablation studies that
thoroughly evaluate our approach. We showcase an example
of gesture recognition system that is built upon the DTNN
framework. Finally, in Sect. 5, we conclude our work and
contributions.

2 Related work

We focus on the research related to conditional computa-
tion and adaptive control of DNNs [34]. Design of efficient
architectures [2,3,35–37], NAS [7,9,38,39], and static model
compression [12–14,16–19,40–44] are different from our
approach such that we have multiple operational points
within a single architecture for performance and efficiency
trade-off, rather than a single static model. In fact, most
architectures can be easily converted into a throttleable one
without losing the peak performance which will be demon-
strated later in Sects. 4 and 4.6.2.

2.1 Conditional computation

Our work builds on conditional computation [49] where por-
tions of the model are executed for prediction to reduce
overall computational load. Different from static or post-
training pruning, sub-models are generated on the fly to
achieve dynamic model size or computation resource. An
intuitive idea is the early prediction where the inference
stops at an early stage of the network once a criterion or
“confidence” is satisfied. Such examples include Adaptive
Computation Time (ACT/SACT) [50], BranchyNet [51],
and Dynamic Time Recurrent Visual Attention (DT-RAM)
[52], where essentially gating is applied for all the ker-
nels after the decision layer. Convolutional neural mixture
model (CNMM) [53], as an example, is the ensemble of
convolutional neural networks (CNNs) that are sampled dur-
ing inference with “early-exit” classifiers. However, vision
tasks in real-world environments are challenging and com-
plex, depending only on low-level features is not practical.
This work leans more toward encouraging sparse activations
throughout the entire network rather than discarding high-
level semantic features.

Beyond early prediction, there are other methods that
reduce computations conditionally. Shazeer et al. [54] pro-
posed the Mixture-of-Experts layer that learns to rank and
select the top several sub-networks. Similarly, in [55], a gat-
ing module is proposed to select among multiple branches
of networks of features for each input. NestedNet [47] con-
structs a nested architecture with several levels of sparsity.
Stochastic Depth [56], Skipnet [48], ConvNet-AIG [33]
and BlockDrop [30] are similar approaches that learn to
bypass ResNet [57] blocks based on the input. Similar ideas
also appear in recent work on neural architecture search,
such as EfficientNet [58] that studies the model scaling of
depth, width and resolution, and OFA [11] that searches
sub-networks for specialized edge devices. Dynamic chan-
nel pruning [32,59,60] can also be categorized as conditional
computation which performs selective convolutions during
runtime.

2.2 Adaptive control

More recently, the research is moving toward dynamically
configuring the network topology at runtime based on input.
In this line of research, no parallel networks are explic-
itly defined, instead, a single sub-network is selected from
the super-network by partially activating model compo-
nents such as filters and layers for each input. For example,
SlimmableNeuralNetworks [46] can scale the networkwidth
to pre-defined configurations. GaterNet [31] uses a sepa-
rate gating network to generate sparse binary masks for the
backbone network in an input-dependent manner. Odena et
al. [61] introduce a “Composer” module to select the com-
putational graph. D2NN [28] uses reinforcement learning to
jointly learn the parameters of computation nodes and control
nodes. Similarly, Spasov et al. [29] propose a channel based
selection method by casting the gating function as a multi-
armed bandit problem. Ahn et al. [45] consider the dynamic
network as an estimator-selector framework for multi-task
learning such that the candidate network is optimized for
one specialized task.

2.3 Summary

The key difference for TNNs as compared to previous work
is the flexible integration of the network modules with the
control decision nodes. Compared with recent work the-
oretically, the TNN itself provides a much more flexible
model selections and applications (Table 1). TNNs subsume
these models [30,46,47]. In particular, [46,47] are subsumed
under our nested width-wise gating strategy with limited
number of operational levels. BlockDrop [30] is only appli-
cable to ResNet-type networks with skip-connections which
can be summarized as our nested depth-wise gating strat-
egy. In terms of adaptive control, [28,29,31,61] generate
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sequences of control nodes as a form of vectors. The control
andbackbone networks are tightly coupled beforefine-tuning
training is further applied. Our approach, on the other hand,
introduces the single-scalar utilization parameter to control
the backbone network that is user-friendly and semantically
meaningful. With the utilization parameter, the control and
backbone network can be trained and optimized indepen-
dently. Furthermore, our two-phase training does not require
fine-tuning the network jointly. The TNNbackbone canwork
by itself and preserve a monotonic performance without the
controller. Other adaptive control approaches can not guaran-
teed this performance since their control is either integrated
into the network or limited by complicated gating functions.
Whereas most previous papers show results for image clas-
sification only, we demonstrate our approach with insights
and provide results for object detection, video classification,
and hardware performance.

3 Technical approach

3.1 Objective and problem setting

Our goal is to enable TNN with dynamic performance dur-
ing inference while having the same or similar number of
parameters with vanilla ones. Furthermore, TNN should be
modular such that (1) they are easily trained with gating poli-
cies that can be fixed or learned, (2) the controller can be
trained separately without retraining the TNN, (3) the frame-
work is largely model-agnostic.

A neural network is a function T�(x) parameterized by
� that maps an input data x to an output ŷ. For example, x
can be an image or a video sequence, and ŷ is the predic-
tion of class label for a classification problem. We define a
throttleable neural network as a function of two variables,
T�(x, u), where u ∈ (0, 1] is a control utilization parameter
that indicates how much “computational effort” the network
should exert.We emphasize that u is an additional input to the
network; after training is complete, the network parameters
� are fixed but u can change.

The problem is then formulated as the minimization of
the “task loss” under all utilization settings, and the general
objective of training TNNs is

minEu∼Uniform(0,1)
[Ltask(y, ŷ; u)

]
, (1)

where y is the ground-truth label of x, and the utilization
u is uniformly drawn from [0, 1]. The loss Ltask is a task-
specific performance measure. We use cross-entropy loss for
classification tasks, and smooth L1 loss [62] for bounding
box regression in object detection tasks.

3.2 Throttleable neural networks

3.2.1 Throttleable block

We consider the building block of TNN architectures that we
call throttleable block (TB). A TB consists of arbitrary num-
ber of filters within one convolutional and fully connected
layer, or across several layers with skip-connections. Most
CNN architectures can be converted into TNNs by replacing
their layers with TBs.

Let x, y denote the input and output features to the throt-
tleable block t parameterized by a set of transformations
φ = {φi | i = 1, . . . , D} ⊂ �, where D is the size of the set
which is called “cardinality”. The transformation φi could
be anything from individual neurons to entire networks, and
we focus on an intermediate level of granularity. It can be
arbitrary NN modules like convolutional or fully connected
layers, as long as they have the same input space and their
outputs can be aggregated appropriately. We define the gat-
ing functions g = {gi | i = 1, . . . , D} to determine whether
to execute each transformation. Then the throttleable block
has the functional form as

y = tφ(x, u)

= aggr (g(x, u) � φ(x))

= aggr (g1(x, u) · φ1(x), . . . , gD(x, u) · φD(x)) ,

(2)

where gi (x, u) : x × (0, 1] �→ {0, 1} is the gating function
generating a scalar of either 0 or 1, � denotes element-wise
multiplication, and aggr is the aggregation function that
maps the set of transformations to the appropriate output
space by feature concatenation or summation. The gating
function gi is computed first and determines whether to exe-
cute φi in practice. For example, if gi = 0, the component φi

is effectively disabled and replaced with zero tensors. Our
exposition focuses on a single gated module for simplic-
ity, but in practice we compose multiple TBs in a typical
TNN. Let x(l) denote the input feature to the l-th layer,
then the output feature x(l+1) has the functional form as
x(l+1) = tφ(l) (x(l), u), and x(l+1) is directly fed as input to
the next layer.

3.2.2 Gating strategies

For simplicity and comparison, we use convolutional layers
for illustrating different gating strategies. Let φ denote a con-
volutional layer with C filters. It can be decomposed into D
groups of transformations {φi ∈ R

C/D×h×w | i = 1, . . . , D},
each of which consists of at most C/D filters. Each group
can be gated selectively. The decomposition and gating is
performed along the first dimension (channel) of φi , and we
name this gating strategy as WidthWise gating. Then we
apply the non-gated transformations on the input features
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1 0 1 0 1 1 1 0

generate gating function

gate selected filters

aggr
(a) WidthWise

1  0  1  

generate gating function

gate selected layers

+ + +

is gated

(b) DepthWise

,

gate last few

(c) Nested

,

gate randomly

(d) Independent

Fig. 2 Selective gating strategies. The colored blocks are activated
groups while white groups are gated. a, b Gating strategies along dif-
ferent dimensions, while c, d have different ordering of gating

and perform aggregation following Eq. 2. An example of
WidthWise gating is shown in Fig. 2a.

Optionally, we can chose to skip the whole layer or block
if we have shortcut connections between layers such as in
ResNet [57], DenseNet [63], and their variants, then we call
this gating strategy asDepthWise gating. Formally, we con-
sider a residual block of the form as y = φ(x) + x where x
and y have the same shape, and a DepthWise throttleable
block can be represented as

y = tφ(x, u) + x

= φ(x) · g(x, u) + x

=
{

φ(x) + x if g(x, u) = 1

x otherwise.

(3)

In DepthWise gating, φ can be any block that consists of
either a single layer or several layers, and the gating function
g is applied to the whole block. An example of DepthWise
gating is shown in Fig. 2b. It is worth noting thatWidthWise
and DepthWise gating can also be used concurrently within
the same network.

3.2.3 Mapping utilization to gating functions

For each throttleable block, the mapping g(x, u) from the
utilization to binary gating vectors needs to be defined.
We consider Independent and Nested gating strategies
to determine which transformations should be gated off,
or the order of gating. In previous conditional computa-
tion research, the components of each gated module are
viewed as independent of one anotherwith few constraints on
their pattern of activation. This Independent gating strategy

(Fig. 2d) works for each component to model different fea-
tures, such as in [30,54]. For our goal of throttlingover a range
of set points, however, this specialization produces redun-
dancies in the representation. We propose a different method
thatwe callNestedgating. In theNested strategy, the gating
function g is constrained such that gi = 1 ⇒ g j = 1 ∀ j < i
(Fig. 2c). In our experiments, we employ a training scheme
designed to maximize the useful range of u. For each train-
ing sample, we draw u ∼ Uniform[0, 1]. Then, for each
throttleable block, we select d group of transformations to
be activated, where d = min(D, 
u · (D+ 1)�) and D is the
total number of groups in the block (cardinality). ForNested
gating strategy, we set g1, . . . , gd to 1 and gd+1, . . . , gD to 0,
while for Independent gating strategy we choose d indices
at randomwithout replacement. Empirically, we observe that
the Nested strategy gives superior throttling performance
given the same architecture.

3.2.4 Learnable gating function

Equation 1 only considers the task performance under all the
utilization settings.Optionally,we can addmodel complexity
constraints while maximizing the task performance, and the
overall loss is then defined as

L(x, u, y, ŷ) = Ltask(y, ŷ; u) + λC(x, u), (4)

where C is a function that measures the resources used
(FLOPs, energy, latency, etc.) for data x at utilization u, and λ

controls the balance of the two components in the loss. The
utilization u is used as the ground-truth for computing the
complexity. We enforce the constraint that the actual com-
plexity of the TNN should not exceed the target complexity u
by optimizing the combined loss function (Eq. 4).We experi-
mentedwith variants ofC of the two functional forms, namely
the hinge penalty

C p
hinge(x, u)

def= max(0, c(�; x, u) − u)p, (5)

and the distance penalty

C p
dist(x, u)

def= |c(�; x, u) − u|p, (6)

where p ∈ {1, 2}, and c(�; x, u) is the complexity of a TNN.
In practice, we found that using the distance penalty with
p = 1 achieves a higher accuracy for the same resource
constraint. The complexity of a TNN is defined as the macro-
average of the complexities over all modules:

c(�; x, u) = 1

L

∑

l

c(φ(l); x(l), u), (7)
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where c(φ(l); x(l), u) denotes the complexity of a block, L is
the total number of blocks in a TNN, and we set c(φ(l)) = 1
for non-throttleable blocks. A natural measure of the com-
plexity of a TB is its cardinality of active transformations
which is defined as

c(φ; x, u) = ‖φ‖−1
1

∑

i

1 (gi (x, u) = 1) · ‖φi‖1, (8)

where ‖φ‖−1
1 is the total number of transformations in a TB,

1(·) is the indicator function, and ‖φi‖1 is the number of
transformations in a group of the TB.

Learning the gate controller is complicated by the “rich
get richer” interaction between g and φ, in which only the
subset ofφ selectedby g receives training,which improves its
performance and reinforces the tendency of g to select it. To
address this, we adopt a two-phase training strategy similar to
[50]. In the first phase, we train the “data path” with random
utilization to optimize only Eq. 1 for being compatible with
throttling. In the second phase, we train the gate to optimize
the full objective (Eq. 4) while keeping the data path fixed.

3.2.5 Training the data path

The data path is referred to as the TNN for specific taskswith-
out any form of learnable gating functions or controllers. For
classification problem, the data path is the network consist-
ing of the feature extractor and multi-class classifier. During
phase 1 of training, we train the feature representations of the
TNN to be robust to varying amounts of gating. Therefore,
the utilization is randomly sampled from a uniform distribu-
tion (Eq. 1). The choice of how u is sampled during training
is important for obtaining the desired performance profile.
From an empirical risk minimization perspective, we can
interpret the training-time distribution of u as a prior distri-
bution on the values of u that we expect at test time. Naïve
training without gating can be viewed as one extreme, where
we always set u = 1. Either Nested or Independent gating
function can be used in phase 1 training.

3.2.6 Training the gate

Besides the fixed gating functions Nested and Indepen-
dent, we propose two learnable gating functions called
Concrete and Reinforce. Our objective is to learn all the
gating functions G = (g(1), . . . , g(L)) during the phase 2,
where we freeze the data path parameters � and optimize
the gate function parameterized by �. To make the output of
a gating function gi either 0 or 1, it is modeled as a Bernoulli
random variable parameterized by ψi :

gi (x, u;ψi ) ∼ Bernoulli(P(x, u;ψi )), (9)

and our task is to learn the parameters ψi for minimizing
C(x, u) while maintaining the task performance. It is worth
noting that the utilization for each TB could vary and the
average utilization reaches u approximately. We minimize
the difference of the actual utilization and the target utiliza-
tion u for each TB instead of enforcing an exact utilization
value. Since the complexity estimate C is discontinuous and
non-differentiable, we need to employ a gradient estimator
for training. We evaluated two existing methods of training
networks with stochastic discrete neurons for this purpose.

Score function estimator Themost common approach [30,
48,64,65] is to treat g as the output of a stochastic policy
and train it with a policy gradient method such as the score
function (Reinforce) estimator,

∇�E[C] = ExEu[C · ∇� log P(G(x, u;�))], (10)

where P(G(x, u;�)) is the probability density of random
variables G. Since each gi is an independent Bernoulli ran-
dom variable (Eq. 9), the log probability is given by

log P(G) =
∑

l

log P(g(l))

=
∑

l

∑

i

log[g(l)
i pi + (1 − g(l)

i )(1 − pi )],
(11)

where pi = P(gi ; x, u, ψi ) is the probability of gating deter-
mined by the learnable gating functions.

Continuous relaxations Relaxation methods soften the
discrete gate vector into a continuous vector of “activation
strengths”. In particular, we use Concrete random variables
(Concrete) [66] to stand in for discrete gating during train-
ing. Concrete distributions have a temperature parameter τ

where the limit τ → 0 recovers a corresponding discrete dis-
tribution. The Bernoulli distribution is replaced by the binary
Concrete distribution,

gi ∼ Sigmoid

((
Z + log

pi
1 − pi

)−τ
)

, (12)

where Z ∼ Logistic(0, 1). We set τ = 0.1 during training
to make the network differentiable, and use τ = 0 during
testing to recover the desired hard-gated network.

3.3 Context-aware controller

Trained TNNs take an input and a single control parameter u.
However, using a fixed control parameter at runtime may not
provide optimal trade-off between performance and utiliza-
tion. The goal of incorporating the context-aware controller
is to adjust the control parameter for TNNs dynamically,
and there are many methods to achieve this functionality in
a heuristic or learned manner. In this paper, we investigate
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a trainable input-dependent controller via solving a contex-
tual bandit problem. Such a controller for the hand gesture
recognition task is elaborated later, which we believe offers
a generalizeable example for a wide variety of vision-based
applications.

3.3.1 Input-dependent contextual bandit

A simplified approach to learn the controller is to frame it as
a contextual bandit problem. Hypothetically, for a classifica-
tion problem, the fact that different inputs or classes require
different amount of computational resources is demonstrated
in [30,31]. Based on this assumption, in order to determine
what is the best utilization parameter for each input, the
prediction of it can be formulated as a sub-problemusing con-
textual bandits. To derive the optimal controller, we develop
the controller network F� which is parameterized byweights
�. The controller outputs the probabilities of choosing a pre-
defined set of actions. During training, a reward is given
considering the actual FLOPS and confidence of the pre-
diction.

3.3.2 State

Given input image or video sequence x, the state representa-
tion is simply defined by the input itself as s. The goal of the
controller is to receive current input signal and select actions
in a way that maximizes rewards for all similar input signals.
It will learn appropriate utilization parameters u for different
states. The controller network will extract a dense feature
representation of input, as well as produce the probabilities
for taking each action. The state reflects the contextual infor-
mation associated with input x.

3.3.3 Action

The action is the selection of the utilization parameter u from
the action set U . Let K = |U | denote the size of the action
set. The actions resemble the definition of “arms” in multi-
armed contextual bandit problems. The learner pulls an arm
according to information provided by input x. As a result,
the prediction of an action is context-dependent. The size
of the action set depends on how u is discretized, namely
the step between the adjacent selections of utilization. As
long as the number of possible actions is determined, the
action set is defined as U = {uk = k

K | k = 1, . . . , K }.
There can be as many as actions in the set, but K should
correlate with the cardinality D of the throttleable blocks.
Larger K requires larger D to differentiate TNN sub-models
if the differences among actions are small. The context-aware
controller is relatively small, it is much more difficult to train
with larger K . For the rest of the paper, we simply set K = 10
since we have at most 16 filters in each TB.

3.3.4 Reward

Only the throttleable blocks that are not gated off accord-
ing to u and gating strategy will be evaluated in the forward
pass. The actual percentage of computations over the max-
imum of being full-throttled does not always equal to the
utilization. Therefore, the true utilization is measured in the
forward pass where the ratio of actual number over the maxi-
mum of Multiply-Accumulate Operations (MACs). One can
also simply use u as an approximation for simplicity which
is shown below. Given the prediction ŷ with confidence c
(softmax of the prediction logits) from the TNN, the reward
of taking u is defined as:

r(u|y, ŷ, c) =
{
exp(1 − u) · (1 − u) if y = ŷ
−(c + γ1) · (u + γ2) otherwise,

(13)

where γ1 and γ2 are constant parameters for balancing the
reward. Larger γ1 gives more penalty if we use more compu-
tations, and larger γ2 gives more penalty if the network is too
confident of a wrong prediction. Their values are empirically
selected so that no over-optimization occurs during training,
which may make the controller only predict the same uti-
lization value. In experiments, they are empirically set to 0.5
and 1.5 respectively. Such design of reward encourages to
achieve higher accuracy while retaining low utilization. And
more penalty is given if the prediction is wrong but takes a
high utilization parameter.

3.3.5 Optimization

Formally, we define the policy of choosing the utilization
as π�(uk |x) = [F�(x)]k , where � denotes the learnable
weights of the controller network F�, and [F�(x)]k ∈ [0, 1]
is the k-th entry of the output vector produced by the con-
troller network which represents the probability of choosing
the particular utilization uk . Then the utilization is deter-
mined by the optimal actionwith the highest probability such
as

u∗ = argmaxuk∈U π�(uk |x). (14)

In order to encourage exploration, ε-greedy is applied where
a random utilization is selected with probability ε. The
contextual bandit network is trained via a policy gradient
approach [67] that maximize the expectation of rewards. The
loss function for training the controller is defined as

L� = −r(u) logπ�(u|x), (15)

where the conditions of the reward are omitted for the
simplicity of presentation. There are other designs of such
a context-aware controller network. For example, we can
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Algorithm 1 Context-aware TNN training

Input: Training set X = {(xn, yn)}Nn=1
Output: TNN T�, Controller network F�

1: Let u ← u0, step �u, learning rates α1, α2
2: for iteration ← 1, 2, · · · ,NTNN do � TNN training
3: (x, y) ← Sample data from X

4: ŷ ← T�(x, u)

5: � ← � − α1∇Ltask(y, ŷ)
6: if reach the iteration of increasing u then
7: u ← u + �u
8: end if
9: end for
10: Freeze parameters of T� � Controller training
11: for iteration ← 1, 2, · · · ,Ncontroller do
12: (x, y) ← Sample data from X

13: u ← Forward F� via ε−greedy
14: ŷ, c ← Forward T�

15: r ← Compute via Eq. 13
16: � ← � − α2∇L�

17: end for
18: return T�, F�

utilize more complex interactions between the physical envi-
ronment and the state of our system if we frame the controller
as a full Markov Decision Process. In our formulation of the
controller, we treat the TNN as a fixed model, but they can
also be fine-tuned by end-to-end training.

3.3.6 Training and testing

Training the TNN is a two-phase procedure as discussed in
Sects. 3.2.5 and 3.2.6. The context-aware controller is con-
sidered as a learnable gating function decoupled from the
TNN, hence only the phase 1 TNN training (Eq. 1) is adopted
via curriculum learning [68]. Specifically, the TNN is firstly
trained with a low utilization, and then with a higher uti-
lization as training epochs increases. By starting with easier
tasks and less learnable parameters, training the TNN ismore
stable with faster convergence. After training the TNN, we
freeze its parameters and train the context-aware controller
via Eq. 15. The entire procedure for training a DTNN is illus-
trated in Algorithm 1.

One of the advantages of DTNN is that the controller is
replaceable after deployment. There aremanymethodologies
to design controllers, such as heuristic rule-based approaches
[69,70], data-driven model-based approaches using rein-
forcement learning (RL) [28], etc. Heuristic rule-based
approaches are intuitive, handcrafted, but not context-aware.
Data-driven model-based approaches are capable of mak-
ing context-aware decisions. For example, the controller is
implemented as a much smaller neural network than the data
network that takes in the input and predicts a proper control
parameter. This is another advantage of a single controllable
parameter as it is more feasible to learn.

4 Experiments

4.1 Experimental setup

To examine the generality of our TNN concept, we imple-
mented throttleable convolutional and fully connected layers
to directly replace the vanilla layers. Then, we created throt-
tleable variants of several popular CNN architectures. All
experiments are implemented with the same default archi-
tecture and training hyper-parameters for each dataset unless
explicitlymentioned.We use suffix to indicate specific gating
strategies such as “-W” for WidthWise, “-D” for Depth-
Wise, “-N” forNested and “-WN” forWidthWiseNested
gating, etclet@tokeneonedot. All experiments are imple-
mented using PyTorch [71] (versions 0.3.1, 0.4, 1.0 and 1.3),
and run on Nvidia GTX 2080 Ti or GPUs. We generate all
of the performance curves by evaluating each model on the
full test set using fixed values of u. We refer to the vanilla
model that do not have gating applied during training as the
baseline. Each data point in each chart is the result of a single
evaluation run for a single instance of the trained model.

VGG-W VGG [72] is a typical example of a “single-
path”CNN.WeapplyWidthWisegatingwith concatenation
aggregation to groups of convolutional filters in each layer
and combine the outputs by concatenation. Because VGG
lacks skip-connections, we enforce that at least one group
must be active in each layer, to avoid making the output zero.

ResNet-D We also experimented with a depthwise-gated
version of standard ResNet with summation aggregation,
similar to BlockDrop and SkipNet [30,48]. In this architec-
ture, a throttleable block is converted from an entire ResNet
block that can be skipped when gated off.

ResNeXt-W ResNeXt [73] is a modification of ResNet
[57] that structures each ResNet block into groups of fil-
ters then aggregates the results by summation. We created
a widthwise-gated version of ResNeXt (“ResNeXt-W”) by
considering each group as a throttleable block.

DenseNet-D/-W In the DenseNet architecture [63], each
dense block contains multiple narrow layers that are com-
bined via concatenation. These narrow layers make natural
units for gating. We view this architecture as both widthwise
and depthwise gating due to the nature of dense blocks and
skip connections.

C3D-W The throttleable block used in C3D is of the
Nestedwidthwise gating strategywith concatenation aggre-
gation, which is applied to 3D convolutional and fully
connected layers. We only apply the widthwise gating along
the channel dimension, and it is worth noting that it can also
be applied along the temporal dimension.
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Fig. 3 Comparisons of relative accuracy drop (%) w.r.t. the peak accu-
racy on CIFAR-10 for DenseNet-WNwith recent dynamic computation
methods. Green shaded area denotes the utilization range of [0.5, 1] for
the TNN, which has 3× 108 FLOPs at u = 1 and 0.79× 108 FLOPs at
u = 0.5

4.2 Image classification task

4.2.1 CIFAR-10

We evaluate the proposed TNNs on CIFAR-10 [74] and
ImageNet [75] datasets following the standard settings of
dataset split and preprocessing [57,72,74,75], and report the
corresponding top-1 classification accuracy.

TheTNNsare basedon following architectures:DenseNet-
WN, the DenseNet-BC (a compressed DenseNet) with 3
dense blocks with a growth rate k = 12, where each dense
block is of WidthWise Nested gating with cardinality
D = 16; ResNeXt-WN, the ResNeXt-50 architecture as
described in [73] with cardinality D = 16 in each of the
4 stages; VGG, the VGG-D architecture truncated to the
first 3 convolution stages followed by a 4096-dimensional
fully connected layer, where all three convolutional stages
and the fully connected layer are throttleable with cardinality
D = 16. The learnable gating function (Reinforce or Con-
crete) is implemented as a multilayer perceptron (MLP)
network (FC → ReLU → FC) that maps the control input
u to gate vectors g for each throttleable block. We show
results for the C2

dist complexity penalty (Eq. 6) where p = 2
and λ = 10.

We compare DenseNet-WN with some state-of-the-art
models described in Sect. 2 on CIFAR-10. Due to the diver-
sity of the ideas, implementations, and reported metrics,
we only use methods that report computation complex-
ity (e.g., FLOPs) and accuracy across multiple operational
points for comparison. The FLOPs for other methods are
directly obtained from their papers. For every operational

Fig. 4 Comparisons of relative accuracy drop (%) w.r.t. the peak accu-
racy on ImageNet for ResNeXt-WN with recent dynamic computation
methods. Green shaded area denotes the utilization range of [0.5, 1] for
the TNN, which has 4.2 GFLOPs at u = 1 and 1.1 GFLOPs at u = 0.5

Fig. 5 TNNs are robust to test-time dropout for object detection on
VOC2007 using Faster R-CNN with throttleable “backbones”

point of each method, we compute its FLOPs and accuracy
drop between the corresponding peak accuracy, namely the
increase in error. It is important to note that utilization con-
trols the ratio of active filters instead of ratio of FLOPs
(low-level filters will have more FLOPs). The FLOPs of
other methods are obtained from their papers. As shown in
Fig. 3, our throttleable DenseNet achieves the most robust
performance across a wide range of utilization (only a few
operational points are drawn for clear visualization) . We
also have the largest number of operational points that can
be adjusted under different computational constraints in a
single model without fine-tuning. For all dynamic inference
models [29–33,48,60], retraining or fine-tuning is required
to obtain each individual model shown in Fig. 3.

4.2.2 ImageNet

Our second set of experiments examines image clas-
sification on the 1000-class ImageNet dataset [75] based
on DenseNet-169, ResNeXt-50, and ResNet-50 architec-
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Fig. 6 A DTNN framework consisting of a lightweight context-aware controller and WidthWise throttleable 3D convolutional neural network
(C3D-W) for video-based hand gesture recognition. The first layer tφ(1) of C3D-W is non-throttleable

tures. For ImageNet, we use pre-trained weights to initialize
the data path, then fine-tuned the weights with gating. In
these experiments, we consider WidthWise and Depth-
Wise Nested gating. For the DepthWise Nested strategy,
we repeatedly iterate through the stages of the network from
output to input and turn on one additional block in each stage,
unless the proportion of active residual blocks in that stage
exceeds u, and stop when the total utilization exceeds u.

We compare ResNeXt-WN with methods described in
Sect. 2 on ImageNet, and perform the same comparison
as described in Sect. 4.2.1. As shown in Fig. 4, our TNN
model still achieves the best trad-off between accuracy and
efficiency across a wide range of utilization. ResNeXt-WN
achieves its peak accuracy of 75.66% at utilization u = 1
(4.2G FLOPs), and 71.72% at u = 0.5 (1.13G FLOPs). As
comparisons, Slimmable [46] achieves similar peak accuracy
of 76%, but degenerates more with only four pre-defined
operational points; the best pruned model from Chen et
al. [60] achieves 68.62% accuracy with 1.6G FLOPs, where
our model outperforms it by 3.1% while having 0.47G less
FLOPs.

4.3 Object detection

We experiment TNNs for object detection task on the
PASCAL-VOC2007 dataset [76]. To create a throttleable
object detector, Faster R-CNN [77] is adopted without
changing its hyper-parameters and the backbone network
is converted into a TNN. We use WidthWise Nested
DenseNet-169 and ResNeXt-50 in this experiment. Follow-
ing the approach of [57] for combining ResNet with Faster
R-CNN, we use the TNN as the feature extractor, followed
by a region proposal network (RPN) and a detection “head”
for object proposal classification and regression. The vanilla
models are trained on ImageNet and then fine-tuned on
VOC2007. The throttleable models are pre-trained TNNs on
ImageNet and fine-tuned on VOC2007 with uniform sam-
pling of u.

We evaluate the above-mentioned models and report the
mean average precision (mAP [.5, .95]) in Fig. 5. Similar to
the results on image classification, we observe that the base-

line methods degenerate quickly when any gating is applied
and reduce to zero at u = 0.55 approximately. For throt-
tleable DenseNet and ResNeXt, the detection performance is
well maintained. DenseNet-169-WN achieves 0.61 mAP at
u = 1 and 0.58 mAP at u = 0.5, saving approximately 60%
FLOPswith only 0.03mAP drop. ResNeXt-50-WN achieves
even higher mAP in a broader range of utilization (0.6 mAP
at u = 0.375). Though the TNN have little lower peak MAP,
it degrades more gracefully and achieves exceptional trade-
offs between performance and computations. TNNs achieve
higher tolerance to test-time dropout because of learning
robust features under different utilization levels.

4.4 Video-based hand gesture recognition

To showcase the TNN architecture for more complex vision
applications, we implemented a TNN architecture based on
C3D [78] to perform hand gesture classification referred
as C3D-W. It takes a fixed number of frames and a con-
trol parameter as input and outputs the gesture classification
results. The controller is a deep contextual bandit network
that follows the designdiscussed above.TheproposedDTNN
framework is shown in Fig. 6.

C3D-WN: We implement a C3D-W architecture with
WidthWise Nested gating strategy. Experiments are per-
formed for the hand gesture recognition task on the 20BN-
JESTER dataset [79]. There are a total of 148,092 videos
of which 118,562, 14,787 and 14,743 are in training, vali-
dation and test set, respectively. Since the ground-truth of
test dataset is not publicly available, we use the validation
dataset for testing and report the results. The class distri-
bution of the dataset is well balanced except for the class
Doingotherthings which represents activities other
than hand gestures. We resize the input video spatial size
(height × width) to 100 × 160, and sample 16 continuous
frameswith randomstarting index fromeachvideo. ForC3D-
W training, we use four Nvidia RTX 2080 Ti graphic cards
with the batch size of 20 for each GPU. Adam optimizer [80]
is applied with an initial learning rate of 5× 10−5, β1 = 0.5
and β2 = 0.999. The learning rate is reduced by 10 with
the patience of 3 epochs if the loss is not decreasing. The
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Fig. 7 Classification accuracy on validation set over utilization parameter u for each gesture class. The top-left facet shows the average accuracy
of 81.10% across all classes ,while a vanilla C3D achieves an accuracy of 82.67%

(b)(a)

Fig. 8 Hand gesture recognition results on 20BN-Jester validation set (as test set). With the context-aware controller, DTNN achieves the best
accuracy–computation trade-off comparing to TNN with fixed utilization

network is trained for 20 epochs with the curriculum learn-
ing schedule where u is set to 0.1, and then increased by 0.1
every two epochs. No further fine-tuning is carried out for
training the TNN.

4.4.1 Context-aware controller

Weexperiment a 3Dversion of ShuffleNet architecture [3,81]
as the controller network. The specifications of theDTNNare
presented in the Appendix Tables 4 and 5. The design of the
controller network is computation-efficient such that the total
number of parameters is only 0.955M with 0.255G MACs.
Note that the controller network is not a TNN architecture.
For controller training, we use a smaller batch size of 16
for handling both the data path and controller network at the
same time. We use RMSprop optimizer [82] with a learning
rate of 1×10−7. The controller is trained for 10 epochs while
freezing the parameters of the data path.

Figure 7 shows the various utilization levels for each ges-
ture class. We verify our earlier hypothesis (Sect. 3.3.1)
that some classes require more resources than others. For
instance, the classification performance remains almost con-
stant for each tested utilization parameter u for Doing

otherthings,while it is linearwithu forShakinghand.
This demonstrates that we can use less resources (e.g., set
u = 0.1) and still achieve high classification accuracy for
Doingotherthings. Practically, DTNN can run with
lowutilization (“idle”)when detecting non-gesture activities,
and with higher utilization when detecting gestures (“throt-
tle”). Given this trained TNN, the classification results of
each test video for every u parameter are collected. Then
a performance oracle is derived by collecting the lowest u
where the TNNmakes the correct prediction for each testing
data. The oracle has an accuracy of 96.14% and an average
utilization of 0.27. It is important to note that the perfor-
mance oracle is just an ideal case for a particular TNNwhich
is impossible to achieve.

The effectiveness of this context-aware controller is con-
firmed with Fig. 8a. The learned controller achieves an
accuracyof 85.24%with an average utilization of 0.41,which
outperforms the vanilla C3D by 2.57%. It manifests that the
controller learns the input-specific utilization for each input.
In Fig. 8b, by comparing utilization distributions with the
oracle, the controller learns a sparse selection of u where
u = 0.1, u = 0.2 and u = 0.8 are chosen more often.
Although the controller has 0.14 more utilization on average
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Fig. 9 Measured throttling performance on NVIDIA Jetson AGX
Xavier

and 10.90% accuracy drop compared to the oracle, it outper-
forms all the fixed utilization configurations as well as the
vanillaC3D. It further demonstrates how the systemcanoper-
ate within different utilization levels with a learned control
policies. Regarding the time of processing a 16-frame clip,
we compute the number of parameters, MACs and inference
time (clip permillisecond) as shown inTable 6.The controller
adds a very little computation cost (0.52% more MACs),
but reducesmuchmore overall computations by dynamically
predicting per-input utilization for the TNN.

4.5 Hardware implementation

We examine the performance of TNN on embedded sys-
tems.We implement and measure the computational benefits
of TNNs on a NVIDIA Jetson AGX Xavier processor [83],
using a throttleable VGG-WN model trained on the CIFAR-
10 dataset. Relative savings in runtime and power rather
than actual peak values are shown because the results highly
depend on the provided hardware mechanisms. We replace
the convolution operations in VGGwith throttleable 2D con-
volution by tensor slicing described in Algorithm 2 where W
and b are the weights and bias for the convolution kernel. To
perform a gated convolution, we form truncated weights and
bias tensors by removing channels corresponding to nonac-
tive groups, then perform an ordinary convolution with the
truncated weights, and finally restore the output to its orig-
inal shape by padding with zeros. In the case of Nested
gating, the implementation is highly efficient, requiring only
two tensor slice operations and one concatenation.

Figure 9 shows accuracy, mean power draw, and runtime
for classifying the entire CIFAR-10 test set on the Xavier
GPU in “MAXN” power mode. The shaded regions show

Algorithm 2 WidthWise Nested Conv2D
Function: Conv2D-WN(x, u, W, b)
1: Let C ← out_channels(W)
2: Let n ← �u · C�
3: Ŵ, b̂ ← W[0 : n], b[0 : n] � Slice parameters
4: ŷ ← Conv2D(x, Ŵ, b̂)
5: z ← Zeros(n − C , size(ŷ))
6: y ← Concatenate(ŷ, z) � Pad with zeros
7: return y

standard deviation of three experiments. Salient aspects of
this result is the linear ramp down of the power and runtime
while accuracy remains high at lower utilization settings.
Compared to no throttling where u = 1, the TNN at u = 0.1
uses 70% of the power, 74% of the runtime, and 52% of the
total energy (103J vs 197J). We anticipate similar gains in
TNN inference efficiencies for other TNN models described
in this paper. The key is having an effective control policy to
guide the utilization settings to match application needs.

4.6 Analysis

TNNs enable a general framework for conditional compu-
tation, whereby the overall computational load and model
accuracy can be determined dynamically at inference time.
In this section, we offer in depth analysis of our results to
best evaluate the proposed architecture and methodology.

4.6.1 Ablation study on gating strategies

The experimental results on CIFAR-10 are shown in Fig. 10.
The most noticeable result is that all TNNs are much more
robust to various utilization configurations, while the naïve
models degrade dramatically (less than 50% accuracy when
applying 25% dropout). By comparing the three architec-
tures, DenseNet-DW achieves the best peak accuracy of
91.19% at u = 0.8125, and maintains the accuracy over 91%
in the utilization range of [0.5, 1]. The other two TNN archi-
tectures also demonstrate strong and consistent performance
in the same utilization range.

Among all gating strategies, Nested gating substan-
tially outperforms all variations over Independent for all
3 architectures. The difference is especially pronounced
for VGG, and we attribute this to that VGG or similar
architectures learn more “entangled” representations than
architectures with skip connections, which could make it
more sensitive to exactlywhich transformations are gated off.
For depth-wise gating, the performance difference between
applying Nested and Independent is smaller than it is for
width-wise. This observation indicates that there are more
dependencies among features when using width-wise gating.
Depth-wise gating is more tolerant of losing features when
applying Independent due to the short connection between
adjacent TBs.

Among models with Independent gating strategy, learn-
able gating models (Reinforce [84] and Concrete [66])
are consistently better than random gating. By training with
Independent gating, the TNN is robust to different levels
of utilization. With learnable gating functions, the learned
gating pattern achieves better performance by allocating
computation non-uniformly across different stages of the
network (shown in Fig. 11). Blocks in the later stages (higher-
numbered) are used preferentially over components in earlier
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Fig. 10 Comparison of classification accuracy with different gate con-
trol methods for three standard CNN architectures on the CIFAR-10
dataset

Fig. 11 Learned gating pattern for selected blocks of DenseNet-DW
on CIFAR-10 with the REINFORCE training. The dotted line shows
uniform utilization

Fig. 12 Comparisons of results between throttleable and vanilla archi-
tectures for image classification on ImageNet-1K

stages. Note that the learned gating functions do not cover the
entire range of possible utilization [0, 1]. The useful range
of u is larger for higher λ and for complexity penalties with
p = 1. We observe that learnable gating functions do not
outperform fixed gating since it is hard to train with very
few learnable parameters using MLPs. Thus, we derive the
context-aware controller for improving the results by decou-
pling the control from TNNs.

The ImageNet classification results are shown in Fig. 12.
All TNNs are smoothly throttleable through the full range of
utilization whereas the pre-trained models degrade rapidly
with increased throttling. The ResNeXt-50 model is the best
in terms of both peak accuracy (75.66% at u = 1) and

area-under-curve. It maintains at least 71% accuracy in the
utilization range of [0.5, 1].

4.6.2 Full-throttle TNN versus Vanilla architecture

To evaluate and emphasize the effectiveness of TNNs, we
summarize and show the results comparisons on CIFAR-10
between the TNNs and the corresponding vanilla architec-
tures in Table 2. We consider the vanilla architectures as the
baselines, and all the throttleable variants are applied with
Nested gating strategy without learnable gates. Applying a
50% dropout on the vanilla architecture (Vanilla u = 0.5)
will result in catastrophic accuracy drop. Instead, TNNs at
u = 0.5 only have a relative decrease within 1.1%. As for
the full-throttle models, we observe an increase of 0.21%
for ResNeXt-W. Remarkably, TNNs can achieve the peak
performance at a lower utilization instead of full-throttling.
The peak accuracy of TNNs is competitive or even superior
to the baselines’. For example, the accuracy on CIFAR-10
for VGG-W at u = 0.75 has 1.36% accuracy improvement,
and for ResNeXt-W at u = 0.88 improves by 0.51%. The
trivial performance difference between the full-throttle TNN
and baseline reveals that most CNN architectures can be
converted into throttleable ones while maintaining the peak
performance.

It can be observed that generic TNN architectures achieve
better performance. VGG consists of several basic convolu-
tional layers; ResNeXt consists of groups of convolutional
layers; and DenseNet consists of convolutional layers that
are connected with previous layers. Without more com-
plex designs of gating strategies, we expect that VGG and
ResNeXt perform better than DenseNet as shown in Table 2.
It is worth noting that no fine-tuning or data augmentation is
applied, and we can always fine-tune a trained TNN at any
level of utilization. More importantly, the task performance
can be retained or even improved with lower utilization as
demonstrated in Table 2.

4.6.3 Controller efficacy

For experiments discussed in Sect. 4.4. The controller net-
work only has 3% parameters and 0.05% MACs compared
with the TNN. The detailed architectures and their computa-
tional costs are shown in the Appendix A.2.

4.6.4 Advantages and potential applications

One important benefit of the proposed DTNN is to lever-
age different groups of features in a single architecture for
robust prediction,which is controlled dynamically by a single
utilization parameter. Decoupling DTNN into two modules
alleviates the training difficulty, and enables more flexible
architectures and applications. In a TNN, howmuch to throt-
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Table 2 Comparisons of
accuracy (%) on CIFAR-10
between full-throttle TNNs and
vanilla architectures

Vanilla Vanilla u = 0.5 TNN u = 0.5 TNN u = 1.0 Peak u

DenseNet-W 92.09 0.10 90.99 90.89 91.19 0.81

(0.00) (91.99) (1.10) (1.20) (0.90)

ResNeXt-W 89.99 0.10 89.55 90.20 90.50 0.88

(0.00) (89.89) (0.44) (0.21) (0.51)

VGG-W 86.43 0.09 86.77 86.39 87.79 0.75

(0.00) (86.34) (0.34) (0.04) (1.37)

For each architecture, the second row shows the relative change (increase or decrease) compared to the vanilla
baseline. The peak performance of a TNN could be achieved with a lower utilization

tle and how to throttle are also disentangled while existing
approaches [28,30–32,48] focus on more complex methods
that are not practical in real-world deployment.

Having a single control signal u also allows us to enable
dynamic throttling to additional constraints beyond those are
presented during training. For example, a deployed applica-
tion may run differently based on environmental conditions
(such as battery charge, illumination levels, temperature,
etclet@tokeneonedot), as a result, may require alternative
operating conditions for the TNN. Because of decoupled
design of DTNN, we can still throttle TNN based on appli-
cation inputs. For example, a system with low battery charge
may impose a lower utilization u, and thereby dynamically
adjust the quality of services based on system capability.
Moreover, the controller behavior can be changed to any
other handcrafted or learnable policies at any time. This
modularized design of DTNN offers a user-friendly and
domain-agnostic learning system for a wide range of real-
world applications such as the presented video-based hand
gesture recognition, object detection and tracking, video ana-
lytics and monitoring.

5 Conclusion

In this paper, we presented a novel run-time dynamically
throttleable neural network (DTNN), as an adaptive model
with flexible topology whose performance can be varied
dynamically to produce a range of trade-offs between task
performance and resource consumption. A DTNN is com-
posed of a throttleable neural network and a contextual
controller for dynamically adjusting TNN’s inference path.
We designed TNNs using throttleable blocks that can be
activated and deactivated during inference time. A sepa-
rately trained context-aware controller which is capable of
input-dependent resource management was implemented.
Comprehensive results on image classification and object

detection show that TNNs can be effectively throttled across
a range of operational points, while having peak accuracy
comparable to their vanilla architectures. The experimental
results on hand gesture recognition task demonstrate that the
proposed DTNN achieves dynamic execution of TNNs with
a context-aware controller, outperforming the vanilla archi-
tecture and all fixed configurations of utilization.

Appendix A

A.1 FLOPs calculation

Weuse the codes from [85] for computing the FLOPs. Table 3
summarizes how to compute the FLOPs for some common
layers:

For computing FLOPs of a convolutional layer in the
TNN,wecount howmanyactivatedkernelswithin each layer,
and the FLOPs are calculated as 2 × No. activated kernels ×
kernel shape × output shape. For fully connected layers, the
input size will change, and the FLOPs are calculated as 2 ×
activated input size × output size.

Table 3 FLOPs calculation for common layers

Layer FLOPs

Convolutional layer 2 × No. kernels × kernel shape × output shape

Fully connected layer 2 × input size × output size

2D Pooling layer 2 × No. output channels × output size

A.2 Detailed architectures

Table 4 presents the exact specification of the C3D-W used
for hand gesture recognition. The conv-block consists of a 3D
convolutional layer with ReLU activation. Stride of all con-
volutional layers is 1×1×1. Stride ofmax-pool-1 is 1×2×2,
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Table 4 Detailed architectures of the DTNN for video-based hand ges-
ture recognition on the Jester dataset

Layer Kernel size C D Output size

conv1 3 × 3 × 3 64 1 16 × 100 × 160

MaxPool 1 × 2 × 2 64 1 16 × 50 × 80

conv2 3 × 3 × 3 128 16 16 × 50 × 80

MaxPool 2 × 2 × 2 128 1 8 × 25 × 40

conv3 3 × 3 × 3 256 32 8 × 25 × 40

conv4 3 × 3 × 3 256 32 8 × 25 × 40

MaxPool 2 × 2 × 2 256 1 4 × 12 × 20

conv5 3 × 3 × 3 512 32 4 × 12 × 20

conv6 3 × 3 × 3 512 32 4 × 12 × 20

MaxPool 2 × 2 × 2 512 1 2 × 6 × 10

conv7 3 × 3 × 3 512 32 2 × 6 × 10

conv8 3 × 3 × 3 512 32 2 × 6 × 10

MaxPool 2 × 2 × 2 512 1 1 × 3 × 5

fc1 – 512 16 1 × 1 × 1

fc2 – 512 16 1 × 1 × 1

fc_class – 27 1 1 × 1 × 1

Sizes are expressed as depth × height × width.
C denotes the output number of channels.
D denotes the cardinality of a TB, and D=1 suggests a non-throttleable
layer

and other max-pool layers are 2×2×2. Padding of all conv-
blocks is one, and padding of all max-pool layers is zero.
In total, C3D-WN has 2.654G FLOPs of non-gated oper-
ations, and 94.752G FLOPs of throttleable operations. The
detailed architecture of the controller is illustrated in Table 5.

Thenetworkbeginswith a convolutional layer followedby16
ShuffleNet units grouped into 3 stages (conv2_x to conv4_x).
Each ShuffleNet unit is a residual block where the residual
branch consists of one 1 × 1 × 1 group convolution, chan-
nel shuffle operation, 3 × 3 × 3 depthwise convolution [1],
and 1 × 1 × 1 group convolution. A cost comparison of the
TNN and controller is shown in Table 6, indicating that the
controller is much more computationally efficient.

A.3 Class distribution of 20BN-JESTER

The class distribution of the 20BN-JESTER training set is
shown in Fig. 13.

Table 6 Cost comparison between the data path network (C3D-WN)
and controller (3D-ShuffleNet)

# params. (M) FLOPs (G) Speed (cpms)

C3D-W 31.865 97.406 137.55

3D-ShuffleNet 0.955 0.510 17.03

Fig. 13 Class distribution of 20BN-JESTER training set

Table 5 Contextual controller
architecture based on
3D-ShuffleNet

Stage* Kernel size Stride Repeat Output size

conv1 3 × 3 × 3 1 × 2 × 2 1 24 × 16 × 50 × 80

MaxPool 3 × 3 × 3 2 × 2 × 2 1 24 × 8 × 25 × 40

conv2_x – 2 × 2 × 2 1 240 × 4 × 13 × 20

– 1 × 1 × 1 3

conv3_x – 2 × 2 × 2 1 480 × 2 × 7 × 10

– 1 × 1 × 1 7

conv4_x – 2 × 2 × 2 1 960 × 1 × 4 × 5

– 1 × 1 × 1 3

AvgPool 1 × 4 × 5 1 × 1 × 1 1 960 × 1 × 1 × 1

fc_action – – 1 10 × 1 × 1 × 1

*each stage from conv2_x to conv4_x consists of one or several ShuffleNet units (the number of repetition is
shown in the 4th column)
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