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JEDE: Universal Jersey Number Detector for Sports
Hengyue Liu and Bir Bhanu, Life Fellow, IEEE

Abstract— The rapid progress in deep learning-based com-
puter vision has opened unprecedented possibilities in computing
various high-level analytics for sports. Artificial intelligence
techniques such as predictive analysis, automatic highlight gen-
eration, and assistant coaching have been applied to improve
performance and decision-making for teams and players. To per-
form any high-level analysis from a game match, collecting the
locations (where) and identities (who) of players is crucial and
challenging. In this paper, a universal JErsey number DEtec-
tor (JEDE) for player identification is presented that predicts
players’ bounding boxes and keypoints, along with bounding
boxes and classes of jersey digits and numbers in an end-to-end
manner. Instead of generating digit proposals from pre-defined
anchors, JEDE predicts more robust proposals guided by players’
features and pose estimation. Moreover, a dataset is collected
from soccer and basketball matches with annotations on players’
bounding boxes and body keypoints, and jersey digits’ bounding
boxes and labels. Extensive experimental results and ablation
studies on the collected dataset show that the proposed method
outperforms the state-of-the-art methods by a large margin. Both
quantitative and qualitative results also demonstrate JEDE’s
superior practicality and generalizability over different sports.

Index Terms— Jersey number detection, player identification,
player statistics, sports analytics, video analysis.

I. INTRODUCTION

RECENTLY, there has been a tremendous growing interest
in artificial intelligence (AI) technology for sports. Every

aspect of sports, from the recruitment of athletes to the analysis
of performance, from game planning to injury management,
from audience experience to media, is empowered by AI. Not
only industry has substantially explored new technologies for
sports, but also academia has dramatically strengthened the
research capacity on the topic. Among various AI applica-
tions, computer vision (CV) for sports has one of the most
significant potentials which may have a huge impact on the
way people view and consume sports content. For example,
current tracking systems [1], [2] are deployed in stadiums
and collect comprehensive game data on players, referees, and
the ball in real-time. The basic statistics of players’ moving
direction, speed, and acceleration, and even more advanced
statistics could be obtained via machine learning. Knowing
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players’ locations, augmented reality (AR) can be applied in
live broadcasting to provide entertainment enhancements such
as ball movement diagrams, player identifications, scoring
probabilities, etc. There are many other CV applications for
sports, such as event detection [3]–[5], activity recognition [6],
human pose estimation [7]–[9], human motion prediction [10],
[11], automatic highlight generation [12], and image gener-
ative models [13]. Moreover, the research in CV for sports
is not only about generating statistics, but also about scene
understanding and human behavior analysis.

We have seen deep learning models [14] that defeat humans
in many games like Go, Chess, and Atari. These games
serve as perfect simulators for learning. Analogically for real-
world applications, sports games are the perfect simulation
environment for scene and human behavior understanding.
Tuyls et al. [15] propose three foundational areas associ-
ated with soccer AI research: statistical learning, computer
vision, and game theory. Computer vision models provide
the complementary high-level and spatially-detailed features
for the other two areas, while benefit from low-dimensional
game-related statistics and metadata from them. Shih [16]
proposes the content pyramid for sports video analytics, which
consists of four layers: video, object, action, and conclusion.
The object layer as the second lowest level, connects the
raw data processing and higher-level analysis. Undoubtedly,
object detection or player identification is the most important
building block for sports video analysis. Traditional methods
for player identification rely on hand-crafted features [17], [18]
or face recognition [19]–[23], which are infeasible for complex
scenes or different fields-of-view. Researchers also try to solve
the problem by detecting the jersey number since it is the
generic visual cue of identity. Early approaches [24]–[27] are
based on optical character recognition (OCR) to extract and
classify numbers. However, these methods are not robust to
the challenges in broadcast sports videos, such as illumination
changes [28], low jersey number resolution, viewpoint and
camera movements [18], players’ pose deformation, occlusion,
motion blur [29], and stadium distractions [30], etc. Deep
learning has been widely applied in CV, but there are only
a few papers on jersey number classification [31], [32] or
player detection [33]–[35], not to mention end-to-end jersey
number detection. Previous work [31], [32] is only applicable
for single-person images to perform image classification, but
not for frames consisting of multiple players. In this paper,
we propose a novel jersey number detection framework for
player identification in sports videos, named as universal
JErsey number DEtector (JEDE). It is a multi-stage detector,
which predicts players’ bounding boxes and pose estimations,
with associated jersey digits’ bounding boxes and classes
all at once. The first stage extracts image features through
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a “backbone” network (e.g., ResNet-50 [36]) and constructs
a feature pyramid [37]; then, a Region Proposal Network
(RPN) [38] is used for generating player candidate propos-
als. The second stage extracts features using RoIAlign [39]
from each player’s candidate box and performs classification,
bounding-box regression, and human-body keypoint regres-
sion. In parallel with these detections, we add a branch that
predicts the bounding boxes of digits of the jersey number
within each player’s bounding box. Both the player’s features
and corresponding keypoint predictions are used for generating
digit proposals. More specifically, we model individual digit
as an object, which is represented by the center and size of
its bounding box. Within each player proposal, we regress
the center and size heatmaps of the digits given the extracted
player features and keypoint heatmaps. By conditioning on
human pose information, the localization of digits is signif-
icantly improved. We then extract features from digit pro-
posals and perform digit classification and bounding box
regression. Finally, the digit detections are paired as num-
ber detections. Our framework is performed on a per-frame
basis with fast inference speed, and no motion information
is used. Besides the novel architecture, two data augmen-
tation techniques called CopypasteMix and SwapDigit
are proposed. CopypasteMix creates new training data by
copying and pasting among images, while SwapDigit by
swapping digit instances with data from other datasets such
as Street View House Number (SVHN) [40]. This paper
significantly extends our previous work [30] by re-designing
the architecture, proposing new data augmentation methods,
and providing more experimental results and ablation studies.
The contributions of this paper are:

1) We tackle the player identification problem via jersey
number detection that is more robust to real-world
variations. We propose the first framework that can
simultaneously predict players’ bounding boxes, pose
estimations, jersey digits’ and numbers’ bounding boxes
and classes. The rich predictions provided by our frame-
work are significant for higher-level analysis.

2) Unlike previous jersey number recognition frameworks,
jersey number detection addressed in this paper is a
challenging multi-player multi-digit detection problem.
Our proposed model JEDE generates jersey number
detections from instance-level digit localization and clas-
sification, which is much more accurate and reliable.

3) We collect a dataset consisting of 4477 images from
soccer and basketball matches. There are 6054 labeled
players with 5406 labeled human body pose, and
6293 labeled digits. Moreover, we propose data
augmentation strategies named CopypasteMix and
SwapDigit that effectively improve detection perfor-
mance and robustness. We also explore pre-training on
COCO [41] and SVHN [40] datasets, which further
improve the results.

4) We conduct comprehensive evaluations, ablation studies,
and comparisons of the proposed framework with the
state-of-the-art methods for jersey number recognition,
object detection, and scene text detection on the col-
lected dataset. We also show that the proposed method is

easily generalized on wild images across different sports
with superb performance.

This paper is organized as follows: an overview of related
research is presented in Section II. In Section III, the technical
approach is explained in detail. In Section IV, comprehensive
experimental results and ablations studies are presented and
discussed in depth. Section V concludes this paper.

II. RELATED WORK

This work is mainly focused on jersey number detection,
which is also highly related to many general vision tasks such
as person re-identification (Re-ID) [42], object detection [38],
[43], multi-object tracking (MOT) [44], and scene text detec-
tion [45]–[47]. Reviewing all the related literature is beyond
the scope of this paper, thus we only discuss the most relevant
research on sports analysis.

A. Player Detection and Tracking

Player detection and tracking are important techniques that
are required for sports video analysis, providing the spatial
and temporal information about players. Player detection is
the preliminary step for player identification that generates
bounding boxes of players, while player tracking associates
the bounding boxes between frames and assigns a tracking
ID for each bounding box. Traditional methods rely on hand-
crafted features. For example, Lu et al. [27], [48] use the
deformable part model (DPM) for player detection and then
perform player classification based on handcrafted features and
tracking information. Gerke et al. [49] augment Histogram of
Oriented Gradients (HOG) features [50] with jersey color
information to improve player detection performance. Modern
deep-learning approaches adopt off-the-shelf object detectors
and their variants for player detection [51]–[54]. For player
tracking, off-the-shelf multi-object tracking algorithms are
commonly used [55]–[58]. Sentioscope [59] is one example of
such a system that maps the image to a modeled soccer field,
performs player detection, builds a likelihood model based on
appearance and motion, classifies teams based on jersey colors,
and assigns identity tags to tracks.

B. Jersey Number Recognition

Jersey number recognition can be considered as the task of
person identification (ID) in the context of sports broadcast
videos where each player’s ID is uniquely associated with the
jersey number. Player identification can be performed directly
based on the player’s appearance or pose features [48], [58],
[60]–[62], but re-training is required if the match roster or
target sport changes. Jersey number recognition provides a
relatively more general and robust solution to player iden-
tification. Most approaches can only perform jersey number
recognition on images that only contain a single player.
Traditional approaches before the dominance of deep learning
usually first build an OCR system, and then classify numbers
based on segmentation results. Šari et al. [25] introduce an
OCR system to segment images in HSV color space with
heavy pre-processing and post-processing. Ye et al. [24]
combine tracking information of frames and a OCR system
to predict jersey number based on voting. These OCR-based
methods have limited flexibility and robustness on real-world
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Fig. 1. The architecture of JEDE - it can be divided into four modules: (1) a backbone network that extracts features and constructs a feature pyramid (e.g.,
ResNet-50 FPN) followed by a RPN (Section III-B.1); (2) a player branch that extracts features from player proposals generated from the RPN via RoIAlign,
performs classification, bounding-box regression, and keypoints regression (Section III-B.2); (3) a pose-guided branch that predicts digit proposals from the
pooled player’s features and corresponding keypoint heatmaps (Section III-C); (4) a digit branch that extracts features from digit proposals, and then performs
digit classification and bounding-box regression (Section III-D.1). Fully-connected layers are denoted by FCs, and convolutional layers by CONVs.

data. Switching to deep learning approaches, Gerke et al. [31]
designs a neural network for jersey number recognition in
cropped jersey number images. Li et al. [32] propose a frame-
work that adopts Spatial Transformer Network (STN) [63] to
refine jersey number features automatically, which is trained
with additional labeled transformation quadrangles in a semi-
supervised fashion. Some work takes the given sports field
into consideration: Delannay et al. [64] create ground plane
occupancy maps from multi-view detections to perform local-
ization, followed by an OCR system with a Support Vector
Machine classifier; Gerke et al. [65] combine the players’
spatial constellation features and jersey number features from
CNNs to achieve better per-game player recognition perfor-
mance. These work make strong assumptions on the hidden
pattern of player’s movement and accurate inverse homogra-
phy, which is not practical or generalizable for other sports.

C. Jersey Number Detection

There is limited work on jersey number detection due to
significant challenges like human pose deformation, camera
view changes, motion blur, and various illumination condi-
tions. Traditional OCR-based methods [24], [25] can only per-
form single jersey number detection on single-player images
with close-up views. Our previous work [30] explores deep-
learning-based multi-player multi-digit jersey number detec-
tion, and proposes a pose-guided R-CNN that still has some
limitations. It requires associations between player and digit
bounding boxes, where wrong associations may occur in
crowded scenes. It does not work well on images with a wider
field-of-view due to insufficient training data. In this paper,
JEDE addresses these challenges and limitations. The major
extension over [30] lies in the pose-guided branch and data
augmentation. The re-designed pose-guided branch directly
predicts digit proposals from each player proposal instead of
using RPN, so no association of bounding boxes is needed.
It provides more accurate and robust digit proposals based
on the player’s features and keypoints. The proposed data
augmentation strategies CopypasteMix and SwapDigit
introduce more training data variations that significantly alle-
viate the problem of limited data as compared to [30].

As a result, the proposed framework JEDE achieves the state-
of-the-art results and outperforms pose-guided R-CNN by a
large margin. The contributions of the paper are summarized
in Section I.

III. TECHNICAL APPROACH

R-CNN and its variants [38], [39], [66]–[68] are flexible,
general, and extensible for many computer vision tasks, such
as object detection, instance segmentation, human pose esti-
mation, and panoptic segmentation. This flexibility provides
more capabilities for sports analysis that involves more com-
plex scene dynamics. In this section, we explain our overall
framework and individual modules of our proposed method.

A. Problem Setup

A jersey number is defined as the unique number on the
player’s uniform to identify players. In our work, only the
number printed on the back is considered since it typically
exists for most team sports. As a jersey number consists of a
sequence of at most two digits in most sports [69], we only
consider detecting the number with a maximum length of
two digits. The task is then to predict the bounding box
and class of any visible and recognizable digit instance on
the back of the jersey in an image. We formulate jersey
number detection as a multi-step approach: player detection,
digit detection, and jersey number detection. Player detec-
tion is based on two-stage Faster R-CNN; digit detection is
a top-down approach performed on each Region-of-Interest
(RoI) of detected players; we then generate jersey number
candidates based on the predicted digits. For jersey number
recognition, previous work [31], [32] simply treats it as
a number classification task, while our approach performs
per-instance digit classification and association within each
player’s RoI.

The overall architecture of JEDE is presented in Fig. 1.
Inspired by Mask R-CNN [39], the framework consists of
four main components: a feature pyramid network (FPN) [37]
as the backbone, followed by a region proposal network
(RPN) [38] for generating player proposals; a player branch for
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player/background classification, bounding boxes regression,
and pose estimation; a pose-guided branch for generating digit
proposals; a digit branch for digit classification and bounding
boxes regression. The final jersey numbers are generated
from digit detections as a post-processing step which will be
discussed in Section III-D.2.

B. Backbone, RPN and Player Branch

1) Backbone and RPN: Similar to scene text detection,
jersey number detection is challenging because of varying
sizes and fonts of jersey numbers in sports broadcasting. The
scale of a player changes with the change of the camera and its
viewpoint. Therefore, the scale of jersey numbers also changes
in a wide range. To capture high-level semantic features at all
scales, a feature pyramid [37] is constructed from ResNet [36]
features. RPN is used to generate player proposals for the
subsequent player and pose-guided branches. We use 5 scales
of anchors {32, 64, 128, 256, 512}, and 3 aspect ratios {0.5, 1,
2} following Faster R-CNN [37], [38]. As shown in section IV
later, we achieve similar results with faster inference speed by
removing the anchor size of 32.

2) Player Branch: The player branch includes three tasks:
binary classification (player vs. background), bounding box
regression, and keypoints regression. Given the player propos-
als from RPN, RoIAlign [39] is used for extracting features.
We keep the same Mask R-CNN [39] heads (small prediction
networks) with pre-trained weights for faster convergence,
where the pooling size is 7 × 7 (pixels in feature maps) for
classification and bounding box regression, and 14 × 14 for
keypoints regression. For human body keypoint detection,
we predict a mask of shape 17 × 56 × 56 for each player
RoI, where there are 17 types of person keypoints following
the COCO dataset [41], and the output feature side length is
56. Please refer to Mask R-CNN [39] for more details.

C. Pose-Guided Branch

For jersey number detection task, previous work [30]
has demonstrated that better jersey number localization can
be achieved given human pose information. Though Faster
R-CNN is capable of regressing jersey number or digit
bounding boxes directly, there are limitations under more
difficult scenarios. For example, varying jersey patterns, fonts,
hash marks, and commercial banners introduce difficulties in
generating satisfactory proposals for RPN. To tackle these
problems, we introduce a pose-guided branch for refining
digit localization conditioned on the player detection and pose
estimation. Each digit proposal is generated based on the
regressions of its center and bounding box size within a player
proposal. We also provide a theoretical analysis on why the
human pose helps in digit localization in the supplementary
material.

1) Design: We consider a single player proposal for illus-
tration. Given the player’s bounding box predicted from the
player branch, the player features are pooled from the feature
pyramid as one input to the pose-guided branch. Another
input is the regressed keypoint heatmaps. Since the feature
dimensions may be different, we use small fully convolutional

networks (FCNs) for adjusting feature dimensions. Specifi-
cally, a convolution kernel with stride of 2 is used for down-
sampling, and bilinear interpolation is used for upsampling,
if needed. The player features generated by the FCN (two
3 × 3 64-channel convolutional layers by default) is denoted
by Fplayer. Depending on the configurations, the spatial dimen-
sion of Fplayer may remain the same or increase to have
higher-resolution features for digit localization. The keypoint
heatmaps are downsampled spatially to have larger reception
fields via a FCN, capturing more semantic features from the
pose estimations. We name the resulting features as Fkpts.
Both features are then fused as F = fusion(Fplayer, Fkpts) ∈
R

C×M×M , where fusion is the function that combines the
two input features, C is the output number of channels, and
M is the output feature side length. The feature fusion can
be either concatenation, addition, or multiplication. The
ablation study on fusion methods is provided in Section IV-F.
Optionally, positional information can be considered as addi-
tional features. We adopt the extended 2D version of positional
embeddings [70], and concatenate them with Fkpts. We can
also concatenate the embeddings with F which is less effective
as shown in the ablation study (Section IV-F).

2) Output and Ground-Truth Generation: We then regress
heatmaps for digit center, center offset, and size respectively.
The fused features F will be fed into 3 FCN prediction heads,
each of which consists of four 3×3 64-channel convolutional
layers. Since there are at most 2 digits for a jersey number for
most of the sports, predicting two-channel center heatmaps
O ∈ R

2×M×M is sufficient. For a single-digit jersey number,
the ground-truth (GT) center is only defined on the first
channel. As for a two-digit jersey number, the left digit center
is defined on the first channel, and the right digit center on
the second channel. Specifically, we define the GT digit center
class d ∈ {0, 1} and the bounding box (x0, y0, x1, y1) where
(x0, y0) and (x1, y1) denote the coordinates of the left-top
and right-bottom corners. The center is computed as o =
(ox , oy) = ((x0+x1)/2, (y0+y1)/2). We then need to map the
digit center coordinates into the feature scale. Given the corre-
sponding player’s bounding box (x p

0 , y p
0 , x p

1 , y p
1 ), we compute

the relative coordinates with respect to the player’s bounding
box as (ox− x p

0 , oy− y p
0 ). The feature-to-bounding-box width

and height ratios are computed as

rw = M/(x p
1 − x p

0 ), rh = M/(y p
1 − y p

0 ), (1)

respectively. Finally, the digit center in the M × M feature
grid is

(o�x , o�y) = (rw · (ox − x p
0 ), rh · (oy − y p

0 )). (2)

For regression of the GT digit center, we quantize the
coordinates, and assign the value of 1 at (�o�x�, �o�y�) and
0 otherwise, where �·� is the floor function. To obtain more
positive training samples, the object center will be modulated
by a bivariate Gaussian distribution along the x-axis and
y-axis following Law [71] and Zhou et al. [72]. Given
the size of the bounding box (w, h) = (x1 − x0, y1 − y0), the
feature-scale size is (w�, h�) = (rw · w, rh · h). Based on the
feature-scale bounding box size, and the desired minimum
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Fig. 2. The architecture of the pose-guided branch. In this example, a two-
digit jersey number is predicted. the center of digit “1” is predicted on the first
channel of O shown as the red dot, and the center of digit “4” is predicted
on the second channel of O shown as the blue dot. The predictions of size
and center offset are location-aware and class-agnostic.

Intersection over Union (IoU) denoted by min_iou, the
Gaussian standard deviations σx and σy are derived as:

(σx , σy) = 1

3
(a, b) = 1

3
�1−

√
min_iou√

2
· (w�, h�)+ 1�, (3)

where σx and σy control the spread of the distribution, and
a and b are the semi-minor axes along the x-axis and y-axis
respectively. The value of min_iou is chosen in the range
of (0, 1), such that for any point (x, y) in the ellipse region
R = {(x, y)| x2

a2 + y2

b2 ≤ 1}, when using it as a center to create
a bounding box of size (w, h), the bounding box has at least
min_iou IoU with the GT. Then, for a digit of class d , its
GT center heatmaps are computed as

Od,x,y =

⎧⎨⎨
⎨⎩

exp
�
�
�x � �o�x��22

2σ 2
x

�
�y � �o�y��22

2σ 2
y

�
, ∀(x, y) ∈ R

0 otherwise.
(4)

In addition to center heatmaps, we regress digit center
offsets � ∈ R

2×M×M for recovering from downsampled
and discretized coordinates. The first and second channels of
� represent the offsets along x-axis and y-axis respectively.
The offset target at the digit center is ��o�x�,�o�y� = (o�x −
�o�x�, o�y − �o�y�), and 0 on all other locations. For regression
of size S ∈ R

2×M×M , the size target at (�o�x�, �o�y�) is the
feature-scale width and height (w�, h�) and 0 otherwise.

3) Losses: Regressions are performed for the three output
heatmaps of the pose-guided branch. We use Gaussian focal

loss [71]–[73] for digit center heatmaps with default hyper-
parameters α = 2 and γ = 4 for weight balancing. Let Ô be
the predicted center heatmaps, then the pixel-wise loss LOd,x,y

is defined as:

LOd,x,y = −
�

(1− Ôd,x,y)
α log(Ôd,x,y) if Od,x,y = 1

(Ôd,x,y)
α(1−Od,x,y)

γ log(1− Ôd,x,y) o/w.

(5)

The offset and size targets are only defined at the GT digit
center locations where Od,x,y = 1, and regressed via L1 loss
as L�x,y and LSx,y . The overall digit detection objective is

Ldet = 1

N

	
d,x,y

�LOd,x,y + λ�L�x,y + λsLSx,y

�
, (6)

where N is the total number of digits within the player pro-
posal; λ� and λs are hyper-parameters for weight balancing.
We empirically set λ� = 1 and λs = 1 for all experiments.

4) Decoding Digit Proposals: With the output digit center
heatmaps Ô, center offsets �̂, and digit bounding box sizes
Ŝ, we need to decode the digit proposals for both training and
inference. To get the digit centers, we follow the same step
in [72]. Specifically, a sigmoid function is applied to the
predicted center heatmaps Ô such that the values are mapped
into the range of [0, 1]. Then a 3× 3 max pooling is applied
to center heatmaps for filtering duplicate detections. The value
of Ôc,x,y is considered as the measurement of the detection
score. Then the top peaks in center heatmaps can be extracted
as the detected digit centers {ôi }Ki=1, where ôi = (ôi

x , ôi
y) and

K is the hyper-parameter to control how many digit proposals
to keep per player proposal. During training, we set K =
100 where the top 50 digit proposals are kept plus 50 random
proposals since we need negative training examples for digit
classifications. For inference, we set K = 20 with the top
20 proposals for balancing the accuracy and inference speed.

To get the corresponding center offset and bounding box
size, we gather the values at the detected digit center (ôx , ôy)

from �̂ and Ŝ, namely the center offset �̂ôx ,ôy = (δ̂x , δ̂y) and

bounding box size Ŝôx ,ôy = (ŵ�, ĥ�). The width and height
ratios, r̂w and r̂h , can be computed via Equation 1 given the
predicted player proposal (x̂ p

0 , ŷ p
0 , x̂ p

1 , ŷ p
1 ). Finally, the digit

bounding box (x̂0, ŷ0, x̂1, ŷ1) can be recovered as

x̂0 = x̂ p
0 + (ôx + δ̂x − ŵ�/2)/r̂w,

ŷ0 = ŷ p
0 + (ôy + δ̂y − ĥ�/2)/r̂h,

x̂1 = x̂ p
0 + (ôx + δ̂x + ŵ�/2)/r̂w,

ŷ1 = ŷ p
0 + (ôy + δ̂y + ĥ�/2)/r̂h . (7)

To obtain jersey number detections, we group the digit
detections based on the digit center class, and determine the
jersey number length. We add a small multilayer percep-
tron (MLP) parallel to the output layer of the center prediction
head, for classifying the number length (“no-digit”, “single-
digit”, and “two-digit”). The MLP consists of a MaxPool layer
(downsampling by a factor of 2) and 3 fully-connected (FC)
layers. The number length is denoted by l ∈ {0, 1, 2}, which
will be used for generating jersey number detection.
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D. Digit Branch and Jersey Number Detection

1) Digit Branch: We sample both positive and nega-
tive (ratio of 1:3) digit proposals from the output of the
pose-guided branch for training, then extract 7 × 7 digit
features via RoIAlign [39]. The digit branch architecture is
the same as the player branch except that there are 11 output
classes for digit classification, including 10 digit classes and
1 background class. The predicted digit class is denoted by c
with a confidence score u, which will be used for generating
jersey number detections.

2) Jersey Number Detection: We predict the jersey num-
ber length l̂ for each player proposal as discussed in
Section III-C.4. Then within each player proposal, there are
multiple digit detections denoted by Bdigit = {b̂i }Ki=1, where
b̂i = (x̂ i

0, ŷi
0, x̂ i

1, ŷi
1, ĉi , ûi ), with the predicted digit center

class d̂ i from the pose-guided branch. The jersey number
detection is generated based on the predicted number length l̂.
For l̂ = 0, we simply discard all the bounding boxes; for
single-digit case l̂ = 1, all the digit detections of ĉi = 0 are
considered as number detections. For a two-digit number
where l̂ = 2, we union digit bounding boxes pair-wisely
and use the multiplication of corresponding digit class scores
as the jersey number score. The jersey number class is the
concatenation (⊕) of digit classes for two-digit numbers. The
top 100 jersey number detections are selected (topk) for
evaluation purpose. The process to obtain the jersey number
detections Bnumber is described in Algorithm 1.

Algorithm 1 Jersey Number Detection

Input: Digit detections Bdigit, jersey number length l̂
Output: Jersey number detections Bnumber
1: if l̂ = 0 then
2: Bnumber← ∅

3: else if l̂ = 1 then
4: Bnumber← Bdigit

5: else if l̂ = 2 then
6: Bd=0 ← {b̂i |d̂ i = 0}, Bd=1← {b̂ j |d̂ j = 1}
7: Bnumber← {( min(x̂ i

0, x̂ j
0 ),min(ŷi

0, ŷ j
0 ),

max(x̂ i
1, x̂ j

1 ),max(ŷi
1, ŷ j

1 ),
ĉi ⊕ ĉ j , ûi × û j ) |
b̂i ∈ Bd=0 ∧ b̂ j ∈ Bd=1}

8: end if
9: Bnumber← topk(Bnumber)

10: return Bnumber

E. Data Augmentations

During training, we employ multi-scale training by ran-
domly resizing the images to several predetermined scales.
To further improve both the player and jersey number detection
performance, we introduce three data augmentation methods
specifically designed for the jersey number detection task in
this section. The jersey number detection is highly dependent
on the player detection performance. The more accurate player
bounding boxes are predicted, the better digit localization
performance is thanks to the proposed pose-guided branch.
However, the digit classification is challenging due to many

factors such as motion blur, clothing deformation, etc. We col-
lected cropped player images from several soccer matches with
annotations of players’ bounding boxes, keypoints, and digit
bounding boxes. However, the collected data does not cover
enough scene variations and range of jersey numbers. A jersey
number may correlate to its popularity and a player’s position
in certain sports, but the digit distribution suffers significant
bias given the limited data. Sufficient data for training both
player detection and digit classification is needed.

1) Pretraining: To create a general jersey number detection
framework that works for most sports, we need more
data besides our dataset. We incorporate the Street View
House Number (SVHN) dataset [40] and COCO Keypoints
dataset [41] for pretraining. SVHN contains images of
numbers with annotated digit bounding boxes, and COCO
contains images of persons with annotated bounding boxes
and keypoints. Specifically, during each training iteration,
we randomly select data from SVHN and COCO with
equal probabilities. The backbone network is trained on
both datasets for obtaining robust player and digit feature
representations; RPN and player branch are only trained on
COCO for generating robust person detection and keypoint
estimation. As for the digit branch, the digit features are
pooled from the ground-truth digit bounding boxes and
used for training the digit classifier. During pretraining, the
pose-guided branch is unused.

2) CopyPasteMix: As discussed in our previous work [30],
our collected images are enlarged patches cropped from whole
video frames. Each image contains at least one player with
annotations. Inspired from recent work on data augmenta-
tion [74]–[78], we propose a data augmentation method called
CopyPasteMix that provides more variability to the training
data. It copies random number of training images and pastes
onto a background image filled in black. The source images
are resized randomly, and each image is pasted in order of
largest to smallest onto a random location. If one image has
an IoU over 0.5 with the previously pasted image, we re-
generate the target location and retry. For any two images
with IoU less or equal to 0.5, we perform a linear blending
of the two images with equal weights. After all the sources
images are pasted, we adjust the ground-truth annotations
accordingly. We then train on the resulting synthetic image.
By using CopyPasteMix, we have more training targets
at different scales and locations per image. Empirically, the
number of images used to construct the synthetic image is
randomly selected between 1 and 5.

3) SwapDigit: We also design another augmentation
method called SwapDigit. We borrow the data from SVHN,
such that the RoI of a digit in our training images is ran-
domly replaced with a cropped digit RoI in SVHN. By using
SwapDigit, we effectively mitigate the lack of digit anno-
tations problem such that each digit class can be trained with
enough data for the digit classifier. It is worth noting that
CopyPasteMix and SwapDigit can be used simultane-
ously for maximizing data efficiency and performance gain.

Among all the discussed data augmentation methods, only
translation or scaling of bounding boxes are involved. The
human body keypoints are changed accordingly with respect
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TABLE I

DATASET STATISTICS. THE COLLECTED STATISTICS FROM THE SECOND LEFT TO THE RIGHTMOST COLUMN ARE: THE NUMBER (#) OF IMAGES, THE
NUMBER OF ANNOTATED DIGITS, THE NUMBER OF ANNOTATED PLAYERS, THE NUMBER OF PLAYERS WITH ANNOTATED KEYPOINTS, THE MEAN

AND STANDARD DEVIATION OF THE BOUNDING BOX SIZE OF PLAYERS AND DIGITS (IN PIXELS), AND

THE BOUNDING BOX AREA RATIO OF DIGIT TO PLAYER

Fig. 3. Example augmented images (left to right) using CopyPasteMix,
SwapDigit, and CopyPasteMix+SwapDigit.

to the players’ bounding boxes. We do not want to under-
mine the geometric relationship between the human pose and
digit locations, so no other transformation is carried out.
Some examples of augmented images are shown in Figure 3.
In Section IV, we show significant performance gains by
using the proposed augmentation methods, and investigate the
individual and combinatorial effects of the augmentations in
Section IV-F. A theoretical analysis on the effectiveness of
the proposed data augmentation methods is provided in the
supplementary material.

IV. EXPERIMENTS

To validate the effectiveness of JEDE, we conduct exper-
iments and compare with other state-of-the-art methods on
our collected dataset as there is no publicly available dataset.
We conduct evaluations on both jersey digit and number
detection tasks. Following the standard COCO [41] metrics
for object detection, we report the bounding box AP and
AR (averaged precision and recall across IoU thresholds from
0.5 to 0.95 with an interval of 0.05), AP50, AP75, AR50, and
AP75 where the IoU threshold is denoted by the subscript.

A. Dataset

There is no publicly available jersey number dataset with
instance-level annotations. To identify players in sports scenes,
predicting the jersey numbers can be more robust than from
other visual information like face and gait. It is natural to
consider the jersey number detection as a top-down process
where player localization provides robust prior information for
digit localization. Human pose information can also be useful
by providing implicit constraints on digit locations. Previous
work [31], [32] only investigates image-level jersey number
recognition which is not practical for real-world applications
where multiple players are involved. Instead of performing
player identity classification directly, digit detection provides
more accurate visual cues of players’ identities. To continue

the advances towards the ultimate goal of automatic sports
analysis, we introduce a new dataset that addresses three core
research problems in detection for sports: player detection,
player pose estimation, and digit detection.

We choose soccer and basketball, two of the most popular
team sports, for creating the dataset. To collect data with
sufficient variations, the game match videos are selected based
on different jersey colors, jersey number colors, and jersey
number fonts. The soccer data is collected from four matches.
The recording device used is a single Canon XA10 video
camera which is installed on a pole that is 15 feet high,
and 10 to 20 feet away from the horizontal baseline of the
soccer field. For better video qualities on jersey numbers, the
camera operator is allowed to pan and zoom accordingly. Next,
the video frames are enlarged by a factor of 2. An off-the-
shelf person detector (e.g., OpenPose [79]) is applied to get
players’ bounding boxes. The image is cropped around each
bounding box with a padding of 150 pixels and a random
shift within 20 pixels to create data variations. Besides the
soccer sport, we also collect frames from one basketball
match. To increase the diversity and add more challenging
training data, the basketball frames are enlarged by a factor
of 2 and divided into 4 large patches of equal size. After
the data collection is completed, the images are labeled via
VGG Image Annotator [80]. For each player in an image,
we annotate its bounding box and legible digits. For players
with digit annotations, 4 human body keypoints (left shoulder,
right shoulder, left hip and right hip) are also annotated.

In total, there are 4477 labeled images, including annota-
tions of 6054 players with 5406 of them are labeled with
keypoints, and 9075 digits. We list the statistics of the collected
dataset in Table I. There are large variations in scales within
each collected video, and even larger across videos. The digit
to player bounding box area ratio is only around 2% as
shown in the table. The relatively small scale of digits makes
jersey number detection even a more challenging task. Some
example image and digit class distributions for each video
are shown in Figure 4. The differences in image appearance
and digit distribution are significant. For a fair evaluation on
the unbalanced dataset, we perform k-fold cross validation
where the training and testing data are divided by videos for
examining the generalization power of JEDE.

B. Implementation Details

Our implementation is built upon the codebase Detec-
tron2 [81] and PyTorch [82]. All experiments are conducted
on a workstation with two Nvidia 1080 Ti GPUs. The model
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Fig. 4. Example images from the collected dataset for each video labeled
in numerical ascending order. Images are resized for illustration. The second
row shows the histogram of digit annotations for each video.

is trained in parallel and evaluated on a single GPU. We set
the hyper-parameters following Mask R-CNN [39]. A fixed
random seed is used, and no data balancing strategy is applied
in all experiments for fair comparisons. We first perform 4-fold
cross validation on the collected soccer data. Then, we conduct
cross-domain evaluations by training on soccer and testing on
basketball data, and vice versa.

We first implement a JEDE baseline with a ResNet-50-FPN
backbone [37], [39]. The positional embeddings are not
included, and only multi-scale training is used during training.
We then implement an augmented version of JEDE baseline
by adding the positional embeddings and using the proposed
augmentation methods. Specifically, we pretrain the model
on COCO and SVHN simultaneously with equal sampling
probabilities, where CopyPasteMix with a maximum of
5 images is applied for SVHN data. Then, we train on our
dataset using both CopyPasteMix and SwapDigit with
the same hyper-parameters of the baseline model.

1) Training: The input images are resized such that their
longer edge is no more than 800 pixels. For the short edge,
we use multi-scale training such that a random scale is selected
during each iteration. We follow some common pixel values
for the shorter edge [38], [39] to choose from: 480, 512, 544,
576, 608, and 640. For each image, there are 512 sampled
player RoIs with a ratio of 1:3 of positive samples (RoIs
with IoU ≥ 0.5 over GT player bounding boxes) to negatives.
For each detected player, we sample 100 digit proposals from
the pose-guided branch. Within the predicted center heatmaps
of each player, we sample the top 50 locations with the
highest scores as detected centers, and randomly sample other
50 from the rest as negative samples. The maximum number
of sampled digit proposals per image is set as 256. We train
the whole framework for 50k iterations, with a mini-batch
size of 4 (2 images per GPU on 2 GPUs) and learning rate
of 0.0002. The learning rate is decreased by 10 at the 40k-th
iteration. We use a weight decay of 0.0001 and momentum
of 0.9.

2) Inference: The test images are resized such that their
longer edge is no more than 800 pixels while the shorter edge
is at least 480 pixels. Top 1000 player proposals from RPN are
kept. We run the player branch on these proposals followed by
non-maximum suppression to get the top 100 player bounding
boxes ranked by classification scores. The keypoints regression
and pose-guided branch are applied to these selected boxes.
For each player instance, we keep the top 20 digit proposals.
Finally, all the digit proposals are fed into the digit branch to
obtain the final classifications and bounding boxes, followed
by non-maximum suppression.

TABLE II

JERSEY DIGIT DETECTION RESULTS

C. Digit Detection Results

In this sub-section, we evaluate the jersey digit detec-
tion performance with thorough comparisons of JEDE to
pose-guided R-CNN [30], and state-of-the-art object detec-
tors such as Faster R-CNN [38], Cascade R-CNN [83], and
TridentNet [84]. Serving as competitive methods, Cascade
R-CNN includes a sequence of detectors that improve the
detection quality, while TridentNet is robust to object scale
variations.

The results of JEDE models are listed and compared with
other methods in Table II. For each cross validation result,
the fold number indicates which test video is used, e.g. fold
1 means that we train on videos 2, 3, and 4, then test on
video 1. Our models achieve the state-of-the-art results with
substantial improvements. JEDE baseline already outperforms
Faster R-CNN over most metrics, and the augmented JEDE
further improves the results. Fold 1 and 4 involve less training
data and more testing data, and we see more performance
gains for JEDE. For example of fold 1, JEDE baseline has
5.02 points improvement in AP over Faster R-CNN, and
3.25 points over pose-guided R-CNN. The results prove the
effectiveness of the pose-guided branch. The digit localization
can be improved by extracting contextual information from the
pose features with limited training data. Moreover, the model
trained with augmentations achieves massive gains such that
AP is doubled compared with Faster R-CNN. Both precision
and recall are dramatically improved over the baseline model,
demonstrating that we have more accurate bounding box
predictions and better digit classifiers. This highlights that our
proposed augmentation methods are capable of diversifying
the training data without any extra cost. It can be seen that
the results of JEDE for fold 3 are slightly lower than Cascade
R-CNN. Since fold 3 only contains 418 testing images, whose
size is relatively small compared with other folds, it is a natural
disturbance for a such small performance gap. The augmented
JEDE still outperforms Cascade R-CNN by 10.51 AP50.
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TABLE III

JERSEY NUMBER DETECTION RESULTS

D. Jersey Number Detection Results

For jersey number detection evaluations, we use the same
metrics as they are in digit detection. Naturally, the precision
is less than it is in digit detection, since both digits must
be detected corrected for a two-digit jersey number to be
counted as a true positive detection. We report the results
of JEDE models, and compare with the pose-guided R-CNN
and the state-of-the-art scene text detection frameworks Mask
TextSpotter V3 [45], and SwinTextSpotter [47]. We use their
open-sourced codebases and modify the output number of
classes to 11 (“0” -“9” and “background”). The model Mask
TextSpotter V3 is initialized with their pre-trained weights,
and SwinTextSpotter is trained from scratch. Both models are
trained with the same settings as in Section IV-B.

Table III compares our results to Mask TextSpotter
V3, SwinTextSpotter, and pose-guided R-CNN. For Mask
TextSpotter V3, we only report AP50, AP75, AR50, and AR75.
JEDE outperforms other methods in every fold by a large
margin. For example in fold 1, the baseline JEDE achieves
26.87 AP50, which shows 24.44 points improvement over
Mask TextSpotter V3 and 20.02 points improvement over
SwinTextSpotter. The augmented JEDE further pushes the
performance with 50.69 AP50. It is worth noting that both
Mask TextSpotter V3 and SwinTextSpotter have poor AP but
fair AR results. This indicates that these methods are able to
detect jersey number bounding boxes but barely classify them
correctly. To examine this behavior, we conduct experiments
by modifying our detection branches similar to commonly
used scene text detection methods. Specifically, we detect
jersey number bounding boxes directly where the union of
digit bounding boxes is considered for a two-digit number.
Then we add the sequence modeling (e.g., Bidirectional
LSTM [85], [86]) for pooled jersey number features as in [45],
[87], [88]. The number classification is performed per column
of the features that can be trained using Connectionist Tempo-
ral Classification (CTC) [89]. This modified model achieves
13.71 AP50 which is much lower than the JEDE baseline. The
unsatisfied results can be justified by the sequence modeling
of jersey numbers. Scene text detection relies on lexicons and

contextual information between characters, while there is no
such dependence between digits in a jersey number. Moreover,
there are not enough jersey numbers for training a robust
recurrent model for sequence classification. Traditional scene
text detection frameworks are probably not suitable for directly
detecting jersey numbers unless heavy adaptations are applied.

In Figure 5, we provide the qualitative comparisons between
JEDE and other methods. Only detections with a confidence
score over 0.2 are shown. JEDE models consistently perform
better under different conditions. The pose-guided branch
provides a strong regularization for the digit locations as
seen from columns 7 and 8 in the figure. JEDE models
predict accurate digit bounding boxes, while other methods
predict wrong locations on arms or hips. It can also be seen
that JEDE is more robust to low-resolution images (columns
1 and 2). The last column shows a failure case where an
extreme pose is presented: “9” is not recognized correctly
due to rare deformations. JEDE Augmented still predicts an
accurate digit bounding box, while other methods generate
some false positive detections. It further demonstrates that the
pose-guided branch provides more reliable digit proposals.
Nevertheless, there are some failure cases for the proposed
method as well. For example, in the last row of Figure 5: in
the 4-th image, “46” is not detected due to partial occlusion;
in the 9-th image, “39” is not recognized since “single-digit”
is predicted from the jersey number length classifier.

E. Cross-Domain Results

It is well known that deep learning vision models are
highly dependent on large labeled datasets. Even though a
trained model can success on one dataset, its performance
often declines significantly on new data or new domain. This
problem is referred to as dataset shift [90] where training
and testing data distributions are different. It can be observed
from Tables II and III that the detection performance differs
among each testing fold, although both training and testing
data are collected from soccer matches. The visual changes
between soccer matches are substantial, not to mention the
domain shift from soccer to other sports, and vice versa. Thus,
we perform two cross-domain experiments between the soccer
and basketball data, without using any transfer learning [91]
or domain adaptation [92] technique.

The first experiment is training on soccer and testing on
basketball data (S→B). During testing, we resize the input
image such that the longer edge is no more than 1600 pixels,
and the short edge is at least 960 pixels. The results are shown
in Table IV. Although models trained without augmentations
suffer from the domain shift and limited data, JEDE Baseline
still outperforms other methods significantly. With augmenta-
tions, JEDE achieves much better performance with 30.34 digit
AP50 and 21.60 number AP50. We further show the qualitative
results in Figure 6. For SwinTextSpotter, we also use their
pre-trained model to perform text detection directly as shown
in the 4-th row of Figure 6. JEDE Augmented still achieves the
best detection results overall. Pre-trained SwinTextSpotter can
achieve fair detection results, but cannot distinguish between
jersey numbers and other texts. In some difficult conditions
as shown in Figure 6, JEDE may fail, such as in the second

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 26,2023 at 18:04:49 UTC from IEEE Xplore.  Restrictions apply. 



LIU AND BHANU: JEDE: UNIVERSAL JERSEY NUMBER DETECTOR FOR SPORTS 7903

Fig. 5. Qualitative comparisons between JEDE and other methods. Each bounding box is labeled with the predicted class and score, if available. The digit
class is labeled under the left bottom corner of the bounding box for all methods (rows 1, 2, 3, 6, 7), and the jersey number is labeled above the box for
JEDE models (rows 6, 7). Only jersey numbers are labeled for Mask TextSpotter V3 and SwinTextSpotter. Images are resized for illustration.

TABLE IV

PERFORMANCE COMPARISON FOR S→B TASK

image, “77” is not detected due to motion blur; and in the 4-th
image, “12” is not detected due to small digit scale.

The other experiment is training on basketball and testing
on soccer data (B→S). During testing, we resize the input
image such that the longer edge is no more than 400 pixels,
and the short edge is at least 240 pixels. CopyPasteMix is
not applied for JEDE Augmented. The results are shown in
Table V. We observe worse results compared with the ones
on S→B, since there is much less training data (but more
testing data) for basketball domain (Table I). Nevertheless,
JEDE Augmented still achieves the best results among all the
methods with number AP50 being over 20 times better than
Mask TextSpotter V3. By comparing the JEDE Baseline and
Augmented results, it implies that SwapDigit significantly
mitigate the problem of limited training data, suggesting the
high practicality of the proposed data augmentation strategies.

TABLE V

PERFORMANCE COMPARISON FOR B→S TASK

The cross-domain results demonstrate that JEDE models have
better generalizability over other methods.

F. Ablation Study

We conduct a number of ablations to analyze JEDE, and
show the digit detection results in this section unless otherwise
specified. All the experiments are based on JEDE Baseline.
Best results are in bold.

1) Backbone: Table VI shows a comparison of JEDE
results, number of parameters (in Million), giga floating point
operations (GFlops), and inference frame per second (FPS)
of various backbones. The metrics are measured on a Nvidia
GTX 1080 Ti GPU with a batch size of 1, and the GFlops and
FPS are averaged over all testing images. We observe that the
results do not benefit from much deeper networks such as
ResNet-101 and ResNeXt-101 due to overfitting on limited
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Fig. 6. Qualitative comparison on the cross-domain task S→B. Faster R-CNN, Mask TextSpotter V3, and SwinTextSpotter achieve poor performances with
false positive detections that predict players, body parts, or texts as digits. JEDE Baseline performs well on player detection and pose estimation with fair
digit classification performance. JEDE Augmented is much more robust to recognize digits thanks to the proposed data augmentation methods.

TABLE VI

ABLATION ON BACKBONE NETWORKS

training data. The JEDE Augmented with ResNet-101 slightly
outperforms it with ResNet-50 by 0.08 as shown in Table II.
It indicates that the proposed data augmentation methods are
more effective than increasing the model size. We also observe
notable speed and performance improvements by removing the
anchor size of 32. Since small proposals are simple negative
examples (background) that do not contribute much to the loss,
the model acquires more effective proposals during training
by removing small anchors. We also compute the inference
speed of Mask TextSpotter V3 and SwinTextSpotter with the
same settings since the jersey number detection task is time-
sensitive. On average, Mask TextSpotter V3 achieves 5.04 FPS
and SwinTextSpotter achieves 2.46 FPS, while JEDE with
ResNet-50 backbone achieves 22.68 FPS as a comparison.

TABLE VII

GT BOUNDING BOX MINIMUM OVERLAP: SMALLER

VALUE GIVES BETTER RESULTS

2) GT Minimum IoU: As discussed in Section III-C.2, the
hyper-parameter min_iou controls the Gaussian blob size of
the digit centers. The larger min_iou is, the smaller the blob
size is. Table VII shows the results of using different values
of min_iou. It can be observed that smaller min_iou gives
better results because more training samples are included while
training center heatmaps regression.

3) GT Heatmap Spatial Size: The spatial size of the GT
heatmaps is important for predicting the center locations of
digits. Hypothetically, higher resolution the heatmaps have,
more accurate the prediction will be due to less coordinate dis-
cretization. We perform the sensitivity analysis of the heatmap
size and show the results in Table VIII. The input player
features are interpolated to the desired size. As expected, using
the largest size achieves slightly better AP. However, simply
up-sampling features does not improve the results significantly.
We further perform the experiment by pooling 56× 56 player
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TABLE VIII

GT HEATMAP SPATIAL SIZE: LARGER SIZE GIVES BETTER RESULTS

TABLE IX

INPUT TO POSE-GUIDED BRANCH: FUSION OF BOTH

FEATURES GIVES BETTER RESULTS

TABLE X

FEATURE FUSION METHODS: CONCATENATION GIVES BETTER RESULTS

features directly. As a result, AP is significantly improved by
4.67 compared with using 14× 14.

4) Keypoint vs. Player Features: We investigate the effec-
tiveness of the pose-guided branch. There are two default
input features, the keypoint heatmaps and pooled player fea-
tures. We conduct ablation experiments by 1) only using the
keypoint features, 2) only using the player features, and 3)
using the fusion of both features. The results are shown in
Table IX. Using both features significantly outperforms only
using one set of features. By adding the keypoint features,
AP is improved by 2.74 points. It validates the effectiveness
of the pose-guided branch that pose information is helpful for
localizing digits.

5) Fusion Methods: We also investigate the fusion methods
of the player features and keypoint features, and show the
results in Table X. Concatenation has better performance
because it provides more feature transformations for the
branch to reduce the semantic difference between the player
features and the keypoint heatmaps.

6) Positional Embeddings: We examine the effectiveness
of concatenating positional embeddings (PE) with different
features, fused features or keypoint heatmaps, and show
the results in Table XI. Adding the positional embed-
dings improves the results, and concatenating with keypoint
heatmaps outperforms with fused features by 0.48 AP. One
possible reason is that both PE and keypoint heatmaps provide
spatial information and make learning easier.

7) Normalization Layers: We further perform an ablation
study on the normalization layers used in the pose-guided
branch. Two commonly used feature normalization methods
are selected, namely Batch Normalization (BN) [93] and
Group Normalization (GN) [94], and the results are shown

TABLE XI

POSITIONAL EMBEDDINGS (PE): CONCATENATION W/ KEYPOINT
HEATMAPS GIVES BETTER RESULTS

TABLE XII

NORMALIZATION LAYERS: GN PROVIDES BETTER RESULTS
USING A SMALL BATCH SIZE

in Table XII. The results are improved by using normalization
layers, and GN performs better than BN due to training with
a small batch size of 4. We expect that better results can be
achieved by using a larger batch size.

8) Number Length Classification: As discussed in
Section III-D.2, we use a MLP to predict the jersey number
length. We investigate three possible features to be considered
as its input: center heatmaps, the second last features in the
center prediction head (features before the center heatmaps),
and the fused features. The jersey number detection results
are shown in Table XIII. Using the 2nd last features gives
the best AP and AR. Using the center heatmaps has worse
performance due to the loss of contextual information of the
player, which is useful for number length classification.

9) Digit RoI Pooling Resolution: One of the
hyper-parameters of the digit branch is the digit RoI
pooling resolution. We conduct experiments with different
resolutions and shown the results in Table XIV. It can be
observed that larger pooling size gives better performance.
Higher resolution provides more fine-grained visual features
that are helpful for differentiating similar digits like “1”
and “7”.

10) Augmentations: Besides the ablation on architectures,
we also perform the effects of data augmentations on JEDE,
including random crop with a maximum of 30% crop
rate, pre-train on COCO and SVHN, CopyPasteMix, and
SwapDigit. For JEDE Baseline, no augmentation is con-
ducted to balance the uneven distribution of digits for fair
comparison. The results are shown in Table XV. Each data
augmentation method improves the results compared to JEDE
Baseline. CopyPasteMix achieves the largest gain of AP by
17.80, while random crop only improves AP by 1.72. More-
over, combining CopyPasteMix and SwapDigit with
pre-trained weights gives the best AP gain of 28.36, and AR
gain of 31.21. The results demonstrate that data augmentation
is one of the key factors for improving the performance given
limited data. For jersey number detection task, our specially
designed augmentation methods have stronger regularization
capability than general methods like random crop.

Better results could be achieved by re-sampling [95], but
the testing data distribution will still be very different from
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TABLE XIII

ABLATION ON THE INPUT FEATURES FOR NUMBER
LENGTH CLASSIFICATION

TABLE XIV

DIGIT ROI POOLING RESOLUTION: LARGER RESOLUTION

GIVES BETTER RESULTS

TABLE XV

ABLATION ON DATA AUGMENTATIONS

training data in the cross validation. This is the reason
why SwapDigit is implemented for mitigating the problem
of unbalanced data. By using the SVHN dataset which is
well-balanced for digit annotations, the detection performance
is much improved for those digit classes that are trained
insufficiently. We provide a per-class comparison of JEDE
Baseline and Augmented as shown in Figure 7. It can be
observed that larger relative improvements are achieved for
those digit classes that have a low AP.

We also evaluate and compare the player bounding box
detection mean average precision (AP player) and keypoint
detection mean average precision (AP kpts) for each experiment
following the standard metrics [41]. We only report on the four
categories of keypoints for which annotations are available
in our dataset. The results are shown in Table XVI. It can
be observed that JEDE Augmented achieves better keypoint
detection performance in each experiment, especially when
less training data is available in the B→S task. The testing
images for each fold are cropped frames with low variances,
and thus the data distribution difference between training
and testing are small. With data augmentations, we provide
a stronger regularization by training with more instances at
different scales. As a result, JEDE Augmented receives less
training data that are similar to the testing data. This suggests
why JEDE Augmented achieves slightly lower AP player in
some experiments compared with the baseline.

11) Toward a Universal Jersey Number Detector: To fully
exploit the capability of JEDE, we develop a slightly larger
model using the best hyper-parameters found in the ablation
studies. We use larger input image size with a maximum of

TABLE XVI

COMPARISON OF JEDE BASELINE AND AUGMENTED ON PLAYER
DETECTION AND HUMAN POSE ESTIMATION RESULTS

Fig. 7. Per-class AP comparisons between JEDE Baseline and Augmented
for each fold and cross-domain task.

1589 pixels for the longer edge. We first pre-train the model
on SVHN and COCO, and then train using CopyPasteMix
and SwapDigit. To prevent “forgetting” [96] the pre-trained
weights for player detection, we train on COCO and our
whole dataset (including soccer and basketball data) concur-
rently with an equal sampling probability for 150k iterations
(3× longer than all other experiments). The learning rate is
decreased by 10 at the 120k-th iteration. Since we use all
the data for training, we only show the qualitative results on
images collected from the Internet. We choose several popular
team sports for visualizations as in Figure 8. The qualitative
results demonstrate the remarkable generalizability of JEDE
across different sports, even though is it only trained on soccer
and basketball domains. There are limitations of the proposed
framework as shown in the last image in the figure, where the
numbers on the players’ heads are not detected. For uncommon
poses and digit locations which do not present during training,
JEDE can only reject low-confidence detections.

12) Limitations and Solutions: JEDE achieves great perfor-
mances on player detection, player pose estimation, and jersey
number detection. However, the detections are not perfect as
shown in the visualizations. We summarize the limitations and
their solutions as follows:
• Our approach is data-driven, and the performance still

suffer from the lack of extensive data. If more annotations
on sports-related poses and jersey numbers are available,
better results can be achieved.

• The jersey number detection performance relies on the
accuracy of jersey number length prediction. If the length
is predicted incorrectly, the predicted jersey number will
be wrong. As discussed in Section IV-D, if more training
data of digits are provided, the number length predictor
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Fig. 8. Qualitative results for images in the wild. Sports from left to right, top to bottom are: soccer, lacrosse, rugby, American football, cricket, basketball,
volleyball, ice hockey, handball, beach soccer, hockey, and water polo.

can be replaced with a sequence decoder like the one used
in Mask TextSpotter V3 [45] and SwinTextSpotter [47].

• It is difficult for JEDE, object detection, or scene text
detection framework to handle blur, occlusion, and small
scale. JEDE can be deployed for real-time sports analysis.
If the detection fails in a particular frame, we can still
obtain correct detections in future frames. Moreover,
in future work, JEDE can be extended for video analysis
by integrating tracking for handling fast-changing condi-
tions in sports fields.

V. CONCLUSION

In this work, a universal jersey number detector (JEDE)
was proposed as an end-to-end solution for automated sports
analysis that performs player detection, human pose estima-
tion, jersey digit detection, and jersey number detection simul-
taneously. A dataset was collected that consists of 4477 images
from soccer and basketball matches with annotations of
6054 player bounding boxes, 5406 poses, and 9075 digit
bounding boxes. Exhaustive evaluations and comparisons were
performed on this dataset. By conditioning digit detection on
player’s features and pose information, JEDE outperformed the
state-of-the-art methods by a large margin. Moreover, to over-
come the problem of insufficient data, data augmentation
techniques CopyPasteMix and SwapDigit were proposed
that significantly improved the results without extra inference
cost. Extensive ablation studies were performed that showed
how individual modules, hyper-parameters, and augmentations
affect the performance of jersey number detection. Finally,
the strong generalization capability of the proposed framework
was demonstrated by showing the superior qualitative results
across many sport domains.
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